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Introduction   

 

Semiconductor materials exist in many structural forms and therefore require a large 

range of experimental techniques for their analysis. However, for investigation of structure on 

the atomic scale, X-ray diffraction is a very sensitive analysis tool. It has been used for a long 

time and has successfully helped scientists to reveal and study the structure of a wide range of 

materials.  

This thesis focuses on experimental work, carried out both at Sensor and Semiconductor 

Laboratory (SSL, Ferrara, Italy) and at European Synchrotron Radiation facility (ESRF, 

Grenoble, France), in which X-ray diffraction technique has been used to probe and study the 

properties of semiconductor crystals for applications in astrophysics and photovoltaics. 

In the last years, the field of soft gamma-ray telescopes aimed to studying violent 

phenomena occurring in galaxy has received a tremendous impulse by the advent of a new 

generation of semiconductor crystals, which resulted in a significant increase of performance 

with respect to traditional instruments operating in this part of the electromagnetic spectrum. 

In particular, for realization of a Laue lens as focusing optics to concentrate X and gamma 

rays coming from the sky, the key factor was the usage of silicon and germanium crystals 

exploiting deformations, which provide extremely uniform bending throughout the whole 

crystal thickness.  

X-ray diffraction has been applied to silicon and germanium bent crystals with the aim 

to study their structural deformation and diffraction properties, for the purpose of diffracting 

high-energy photons for astrophysical observations through a Laue lens. In the framework of 

ñLaue projectò, devoted to build a broadband (80-600 keV) focusing lens and financed by the 

Italian Space Agency (ASI), a thorough X-ray characterization allowed accurate adjustment 

of the experimental parameters for crystal fabrication and certification of its quality of 

diffraction properties prior to installation as optical element onto the lens. 

With regard to photovoltaics, semiconductors crystals are still under investigation as 

efficient heteroepitaxial structures for multi-junction solar cells.  

Several characterization techniques have been used for the evaluation of heteroepitaxial 

semiconductors, and have enabled the advancement of the field to its present state. X-ray 

diffraction is the most widely used technique for the characterization of heteroepitaxial layers. 

In fact, it is nondestructive and yields a wealth of structural information, including the lattice 

constants and strains, composition and defect densities.  

In this thesis it will be shown main experimental results of X-ray characterization of 

semiconductor crystals of silicon and germanium as well as their applications to astrophysics 

and material science.  

Chapter 1 contains a theoretical background on X-ray diffraction in perfect and in 

specifically deformed crystals. Chapter 2 highlights the equipment which have been used for 

X-ray characterization of the samples analyzed in the framework of this thesis. Chapter 3 is 
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devoted to the investigation of Si and Ge crystals fabricated at SSL for the realization of a 

Laue lens for astrophysics. With this aim, main experimental results of X-ray diffraction 

obtained at ESRF are presented. In particular, it will be pointed out that crystals diffracted 

photons from 150 to 700 keV with efficiency peaking 95% at 150 keV for Si. Chapter 4 

presents heteroepitaxial SiGe samples, their fabrication and investigation of structural 

properties by X-ray analysis at SSL, for their usage as solar cells in photovoltaics. Finally, an 

Appendix shows results of X-ray study on ceramic coatings for applications of wear resistant 

materials in metallurgy.  
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1. X-ray diffraction in crystals  

 
1.1. Theory of X-ray diffraction in ideal crystals 

 

In the present chapter, the basics of the theory of X-ray diffraction in crystals will be 

described. The following concepts and equations are mainly taken from Refs. [1.1-1.5]. 

Please, refer to these documents for further details as well as to other articles in this volume 

for a good coverage of recent works on hard X-ray diffraction, both theoretical and 

experimental. The possibility of using crystals as natural diffraction gratings for X rays was 

conceived by von Laue in 1912, and the subsequent experiments immediately proved that the 

idea was correct. In fact, von Laue showed that the observed effects could be interpreted as 

due to diffraction of electromagnetic waves in a three-dimensional grating [1.6, 1.7] and his 

discovery gave convincing proof of both the wave nature of X rays and of the periodic 

structure of crystals. Thus, the foundation was laid for two important fields of scientific 

research, i.e., the study of X rays and the study of crystal structure. The improved 

experimental technique due to W. H. and W. L. Bragg [1.8, 1.9] greatly contributed to the 

rapid development of both fields and their work clearly proved the far reaching consequences 

of Von Laueós discovery. 

 

1.1.1. The Laue and Bragg Equations 

 

As stated in Ref. [1], a linear diffraction grating may conveniently be defined as a 

straight line along which the scattering power is a periodic function of position, i.e.,  

 

 ‪ὶӶ ‪ὶӶὒὥ  1.1.  

where ὒ is any integer and ὥ is the period and measures the vector separation of 

neighboring points. An electromagnetic plane wave of monochromatic radiation incident onto 

the grating will be then scattered in all directions by a line element. Since the scattering power 

of the grating has a periodic nature, the diffraction maxima will take place in the directions 

corresponding to path differences equal to an integral number of wavelengths. 

This diffraction problem leads to the formula 

 

 ὥẗὯ Ὧ  Ὄ  1.2.  

 

Ὧ is the wave vector of incident X-ray beam and Ὧ that of the diffracted beam, i.e.,  
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 Ὧḳ
ρ

‗
ό ȟ   Ὧ ḳ

ρ

‗
ό  1.3.  

 

Here ‗ is the wavelength while ό and ό represent unit vectors along the directions of 

incident and maximum diffraction, respectively. 

On the other hand, a three-dimensional grating corresponds to a spatial distribution of 

matter for which the scattering power is a triply periodic function of position or 

 

 ‪ὶӶ ‪ὶӶὒὥ ὒὥ ὒὥ  1.4.  

 

Thus, the three-dimensional grating can be considered as consisting of three sets of 

linear gratings with periods ὥȟὥ and ὥ. In order to find the diffraction maxima for such a 

three-dimensional grating, the wave vectors must simultaneously satisfy equation 1.2. for 

each of the components, i.e.,  

 

 

ὥẗὯ Ὧ  Ὄ  

ὥẗὯ Ὧ  Ὄ  

ὥẗὯ Ὧ  Ὄ  

1.5.  

 

These are Laueôs equations, where Ὄ , Ὄ  and Ὄ  are integers associated with each 

diffraction maximum. These three scalars equations can be rearranged in more convenient 

form as a single vector equation, leading to  

 

 Ὧ Ὧ ὄ  1.6.  

 

that is called the Laue vector equation, where the abbreviated form of Ὧ  ḳ

Ὧ  has been used. Here ὄ ὄ  Ὄὦ Ὄὦ Ὄὦ , where ὦȟὦȟὦ  

represents the vector set in reciprocal lattice space, i.e., reciprocal to ὥȟὥȟὥ . Thus, 

according to Eq. 1.6.,  ὄ  is associated with each diffraction maximum. If the first two 

equations in 1.5. are rearranged and subtracted from each other, we will have 

 

 
ὥ

Ὄ

ὥ

Ὄ
ẗὄ π 1.7.  
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which means that   must be perpendicular to ὄ , and similarly for all the 

combinations. If one considers a plane in lattice space that intercepts the ͼὥͼ axis at ρὌ , 

the ͼὥͼ axis at ρὌand the ͼὥͼ axis at ρὌ , the quantities ὌȟὌȟὌ  may accordingly be 

denoted as Miller indices of a family of lattice planes. Therefore, equation 1.7. can only be 

satisfied if ὄ  is normal to the plane ὌὌὌ .  

Since Ὧ  Ὧ  ρ‗ȟ the Laue vector equation expresses the fact that the vectors 

Ὧ  and Ὧ are edges of a rhomb whose ὄ  is a diagonal as shown in Fig. 1.1. In the lattice 

space the sequence of planes represented by ὄ  makes equal angles with Ὧ and Ὧ . One can 

thus considers the diffracted beam to be produced by a reflection of the incident beam in the 

family of planes normal to ὄ . The magnitude of left side of equation 1.6. results to be 

  where ʃ  is the Bragg angle and ς—  the scattering angle. On the other hand, the 

magnitude of the right side is ρὨ where Ä  is the spacing between the sets of crystal 

planes. Therefore we have  

 

  
ςÓÉÎ—

‗

ρ

Ὠ
 1.8.  

 

i.e., the Bragg equation. For a cubic crystal with lattice constant Á, the spacing of the 

ὬὯὰ planes is given by formula 

 

 ὨὬὯὰ ὥὬ Ὧ ὰ  1.9.  

 

The hËÌ Bragg angle is then 

 

 — ὬὯὰ ÓÉÎ
‗Ὤ Ὧ ὰ

ςὥ 1.10.  
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 Figure 1.1: The Bragg condition for diffraction  [1.1]. 

 

 

1.1.2.  Construction of the diffracted wave vectors in the reciprocal lattice  

 

To deepen the understanding Braggôs formulation of diffraction phenomenon, a simple 

geometric construction in the reciprocal lattice of the diffracted wave vectors associated with 

a given direction of incidence and a given wavelength was reported in Ref. [1.10]. As shown 

in Fig. 1.2, since the three vectors ὯȟὯȟ and ὄ  form a closed triangle (see equation 1.6.), a 

vector ὄ  which satisfies the Laue equation must terminates on the sphere of reflection or the 

Ewald sphere. In fact, if the incident wave vector Ὧ is chosen at random, the Ewald sphere 

will not pass through any reciprocal lattice point in general. Thus, in order to produce 

diffraction maxima, it becomes necessary to adjust the wavelength or the incident direction in 

such a way that one or more of the reciprocal lattice points fall on the Ewald sphere. Indeed, 

as depicted in Fig. 1.2. when the wavelength or the direction of incidence Ὧ  is varied, there 

will be a corresponding variation in the radius vector in the reciprocal lattice. If the Laue 

vector equation is satisfied a diffraction maximum will be produced.  

 



 
 

11 

 
 Figure 1.2: The Ewald sphere construction [1.1].  

 

With this regard, there are several experimental methods which are being used to 

produce X-ray diffraction maxima. Since Ὧ  is a function of three scalar variables, it is 

sufficient to vary only one of the three variables in the incident wave vector, while the other 

two are being fixed. However, two or all three variables may be varied at the same time.  

With this aim, let ‗ȟ‘ȟ and ’ be the three scalar variables of the incident wave vector, 

where ‗ is the wavelength, while ‘ and ’ are two parameters describing the direction of 

incidence of the plane wave. As said above, in order to produce diffraction maxima, it is 

necessary to allow at least one of the three quantities ‗ȟ‘ȟ and ’ to vary continuously. 

Therefore, the different experimental methods can be depicted as follows: 

I. The wavelength is variable, but the direction of incidence is fixed, i.e., ‗ 

variable, ‘ ‘, ’ ’ 

II.  The wavelength is fixed, but the direction of incidence varies with one degree of 

freedom, i.e., ‗ ‗, ‘ ‘, ’ variable or ‗ ‗, ’ ’, ‘ variable.  

III.  The wavelength is fixed, but the direction of incidence changes with two degrees 

of freedom, i.e., ‗ ‗, ‘ and ’ vary independently. 

In cases I and II, the incident wave vector has one degree of freedom and the diffraction 

direction is then uniquely determined. The diffraction maxima are sharply defined, being 

recorded as spots on a photographic plate. The first method is called the Laue method, 

because it was used by Laue in its original experiments, and can be experimentally carried out 

by using continuous X rays. Since this technique is based on sharply defined direction of 

incidence, a single crystal must be used as sample under analysis. On the other hand, the 

second method consists in variation of the direction of incidence with one degree of freedom, 

thus the best way of achieving it is to rotate the sample relative to the incident X-ray beam, 

this latter being monochromatic. In this case a single crystal can be employed but one can also 

uses substances in the form of aggregates where the direction of incidence with respect to 
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such an aggregate will have one degree of freedom. This latter method is also called the 

rotating crystal method. 

The third method consists in variation of the direction of incidence with two degrees of 

freedom. If a single crystal is available, one of the two parameters ‘ and ’ can be changed at 

a time, i.e., it results to be the rotating crystal method again. However, the third method is of 

importance only in connection with the study of substances in the form of aggregates or 

powders having random orientation because the observed diffraction effects are the same as 

for a single crystal will all combinations of ʈ and ʉ. This method is commonly called the 

powder method and the diffraction maxima will draw out a line on a photograph film located 

on focal plane. Indeed, each diffraction pattern is made up of a large number of small spots, 

each from a separate crystallite of the aggregate and every spot is so small as to give the 

appearance of a continuous line.  

For the sake of simplicity, there have been reported only the main methods for production 

of X-ray diffraction maxima. For more information, see Ref. [1.1]. 

 

1.1.3. X-ray scattering by a single electron and by a single atom 

 

 
Fig. 1.3: Scattering of a randomly polarized X-ray beam from an electron [1.5]. 

 

 

As stated in Ref. [1.5], X rays are scattered in all directions by a single electron, with 

the scattered intensity strongly dependent on the scattering angle, •. This dependence was 

derived by J. J. Thomson and is given by formula 

 

 Ὅ Ὅ
‘

τ“

ή

ά ὶ
ÓÉÎ— 1.11.  

 

where ) is the intensity of scattering from a single electron at a distance ὶ, ʈ τʌ

 ρπ(Í , ή is the charge of electron (ρȢφπςρπ  ὅ), and ά is the electron rest mass, 

i.e., ωȢρρρπ ὯὫ. • is the angle between the scattering direction and the direction of 

acceleration for the electron, thus depending on the polarization of the X-ray beam. If the 

incident wave is unpolarized, the angle ʒ becomes indeterminate and the term ÓÉÎ— must be 

replaced by its average value. Considering Fig. 1.3, an unpolarized X-ray beam diffusing 
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from point N encounters an electron at the origin O and the scattered beam is consequently 

observed at point P. Electric vector Ὁ can be divided into two orthogonal components, Ὁand 

Ὁ , where the first is perpendicular to both the line NO and the scattering plane NOP and Ὁ  

is the component parallel to this plane. Because of the random nature of the direction of Ὁ, the 

mean square values are equal, i.e., Ὁ  = Ὁ  = Ὁ. The scattered intensity is thus divided 

between the two polarization, leading to 

 

 Ὅ Ὅ  
Ὅ
ς 1.12.  

 

At point P the scattered intensity is the sum of the intensities for the two polarizations. 

In particular, for ʎ polarization, • “
ς, but for ʌ polarization,• “

ς ς—, where — is 

the scattering angle. Then the intensity scattered to the point P results to be 

 

 Ὅ
Ὅ

ς

‘

τ“

ή

ά ὶ
ρ ÃÏÓς— 1.13.  

 

This is the familiar Thomson scattering formula for an unpolarized X-ray beam by a 

single electron. In an X-ray diffraction experiment, all of the terms in this equation are 

constant except for ρ ÃÏÓς—, which is called the polarization factor. 

 

The total effect of the electrons which scatter an X-ray beam in an atom is taken into 

account by the atomic scattering factor Ὢ, which is defined as the ratio between the amplitude 

of a wave scattered by an atom and that scattered by a single electron. The atomic scattering 

factor depends on the atomic number, the scattering Bragg angle and the wavelength of X-ray 

beam. As highlighted in Ref. [1.2], the exact calculation of the atomic scattering factor is 

usually difficult because it requires to consider the coherent diffusion by each electron of an 

atom, taking into account quantum physics. Numerical values can be obtained by using 

analytic expressions available in the International Tables for X-ray Crystallography [1.11]. 

These expressions are best fits to experimentally determined atomic scattering factors and are 

in the form   

 

 Ὢ ὧ  ὥὩ  1.14.  

 

where the ὧȟὥȟ and Â in ὃ  coefficients are tabulated in [1.11] for many elements. 
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While the atomic scattering factor provides for the intensity of the beam as diffused by a 

given atom, the structure factor Ὂ is the sum of all scattering contributions from individual 

atoms in a unit cell, i.e., the scattering power of a unit cell 

 

 Ὂὄ  Ὢ Ὡ ẗ  1.15.  

 

where Î represents the number of atoms per elementary lattice, and the ά atom has 

been considered to be at the position όȟὺȟύ   in the unit cell defined by the lattice 

vectors ὥȟὥȟὥ . Ὢ is the atomic scattering factor of the  ά  atom. If the atoms of the 

lattice are of the same kind (e.g., silicon germanium, copper, etc.) the structure factor can be 

written as: 

 

 Ὂ  Ὢ Ὡ ẗ ὪὋ 1.16.  

 

where Ὃ is the geometrical factor which depends on the positions of the atoms in the 

lattice and on the Miller indexes and shows that, due to destructive interferences, some 

crystallographic planes can not reflect the beam. Theoretical computation of the geometrical 

factor can be found in [1.2].  

Finally, the amplitude of scattering from a single unit cell can be written as 

 

 ὊὉ 1.17.  

 

Ὁ being the amplitude of scattering from a free (Thomson) electron. 

 

1.1.4.  X-ray scattering from a single ideal crystal 

 

 Under the assumptions highlighted in Ref. [1.1], the amplitude of scattering due to a 

single ideal crystal will be given by the sum of the contributions from the various unit cells, 

taking into account the phase differences. Considering an entire ideal crystal, if the origin is 

chosen at a corner of one unit cell, the location of any other unit cell can be described in terms 

of a lattice vector ὃӶ ὒὥ ὒὥ ὒὥ. In fact, the contribution to the total amplitude 

from the unit cell positioned at ὃӶ is ὊὉὩӶẗӶ, where ίӶ ς“Ὧ Ὧ ς“ὄ  and ίӶẗὃӶ is 

the difference in phase with respect to the radiation reflected by the unit cell located at the 

origin. Thus, the total amplitude is simply given by  
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 Ὁ  ὉὊ ὩӶẗӶ 1.18.  

 

where the summation must be extended all over the unit cells of the crystal under 

consideration. If one considers a crystal with parallelepiped shape having edges 

ὔὥȟὔὥȟὔὥ, the total number of unit cells in the crystal is therefore ὔὔὔ ὔ and 

the expanded form of the summation in equation 1.19. becomes  

 

 ὩӶẗӶ Ὡ Ӷẗ Ὡ Ӷẗ Ὡ Ӷẗ   1.19.  

 

which is the one of a geometric series and hence equation 1.19. turns out to be 

 

 
Ὁ

Ὁ
Ὂ

Ὡ Ӷẗ ρ

ὩӶẗ ρ
 1.20.  

 

The intensity ratio can be obtained from the amplitude ratio by multiplication with the 

complex conjugate, thus leading to  

 

 
Ὅ

Ὅ
ȿὊȿ

ÓÉÎ
ρ
ς
ὔίӶẗὥ

ÓÉÎ
ρ
ςίӶẗὥ

 1.21.  

 

Hence, due to the periodicity of the crystal, the intensity of the diffracted beam is 

essentially zero unless  

 

 

 

ίӶẗὥ ς“Ὄ 

ίӶẗὥ ς“Ὄ 

ίӶẗὥ ς“Ὄ 

 

1.22.  

this latter being identical to the Laue vector equation. Finally, the intensity of scattering 

from an ideal crystal is    

 

 Ὅ  ὍὊὔ  1.23.  
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where ὔ is the number of unit cells in the crystal and  Ὂ the structure factor.  

It is worth to note that equation 1.21. has been obtained assuming that the incident wave 

is not affected by the presence of the crystal medium. In fact, an X-ray beam traversing matter 

will suffer absorption, i.e., there will be a deviation in energy from the incident beam. The 

absorption phenomena which occur in crystal matter are of two main types. The first type is 

the photoelectric absorption where the incident radiation energy is converted into the kinetic 

energy of an ejected electron. The second type of absorption is based on a transfer of energy 

from the incident to the scattered radiation and in this latter case, there are two scattering 

processes, i.e., the Compton scattering and the coherent scattering. According to equation 

1.21., the intensity of the coherent scattering from a crystal is negligible except when the Laue 

conditions are satisfied. When the Laue equation is not fulfilled, the incident beam will 

undergo the absorption due to the ejection of photoelectrons and Compton scattering, 

hereinafter referred to as normal absorption. On the other hand, the absorption which arises 

when the Laue conditions are satisfied and diffracted waves are produced is called extinction. 

Normal absorption is described by means of the linear absorption coefficient ‘ which is 

defined as the fractional intensity decrease per unit length of path through the crystal medium. 

Since equation 1.21. shows that diffracted intensity decreases as the crystal size decreases, in 

the limit of very small crystals, both normal absorption and extinction can be neglected. Later 

studies proved that extinction must be taken into account when the linear dimension of the 

crystal is of the order of ρπ ὧά or greater. Thus, the intensity formula in equation 1.21. 

represents an asymptotic solution which holds true only for crystals having linear dimensions 

of ρπ ὧά or smaller. 

 

1.1.5. The dynamical theory of X-ray diffraction : basic concepts  

 

As highlighted in the above section, the main concepts of X-ray diffraction theory 

presented so far neglected both normal absorption and extinction, thus being valid only in the 

limiting case of small crystals. On the other hand, the dynamical diffraction model has to be 

considered for best describing the physics of incident and diffracted waves within the crystal. 

With this regard, letôs consider a crystal with a series of atomic planes which are parallel to 

each other as in Fig. 1.4.  
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Fig. 1.4: Dynamical interaction of X rays with a perfect parallel-sided set of diffracting planes [1.3]. 

 

If the beam path ὃὄ of a photon is at an incident angle —  in such a way to scatter it in 

the direction ὄὅ, then it will also be at the correct incident angle to be scattered from the 

underside of these crystallographic planes. Therefore a dynamic situation occurs inside the 

crystal, where the energy of the incident beam decreases with depth due to losses and 

interferences between the multiple scattered beams along the direction ὃὄ. Clearly, normal 

absorption occurs for all directions of incidence, while extinction is important only when the 

incident wave vector has such a value that the Laue equation is satisfied.  

This represents the basis of the dynamical scattering model proposed by Darwin in 

Refs. [1.12, 1.13]. The foundation of the dynamical theory is a solution of Maxwellôs 

equations in the periodic electron density of the crystal. This theory has enabled the 

calculation of the intensities and shapes of diffraction profiles from thick, perfect and real 

crystals.  

To understand how the photon is scattered within a crystal and generates an internal 

wave-field, the physical description given by Ewald or Laue can be followed [1.3]. In fact, 

each atomic site is considered to be occupied by a dipole which oscillates and emits radiation 

when a photon passes nearby. Due to the periodicity of the crystal, there will be an array of 

oscillating dipoles (also called ñdipole-wavesò) all emitting electromagnetic radiation, which 

adds to the total radiation field and interacts with other dipoles. Each dipole has been assumed 

to emit in phase, thus producing two plane waves: an electromagnetic wave which is created 

by the dipole and the dipole itself. Nevertheless, since Ewald did not consider that the crystal 

has a distributed electron density and should hence be considered as a dielectric, Laue made 

another approach but obtaining the same results. Indeed, he thought the crystal to be formed 

by continuous negative charge with shielded positive charges, these latter being the atomic 

nuclei, in a periodic array. When no incident photon exists, any atomic site in the crystal can 

be seen as neutrally charged. On the other hand, when an electric field is applied there will 

occur a relative displacement of the charges which would result in an electric polarization and 

thus the induced electric field will be given by  
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 Ὀ  Ὁ τ“ὖ 1.24.  

 

or  

 

 Ὀ ρ …Ὁ 1.25.  

 

where Ὁ is the applied electric field and ὖ is the polarizing field. …Ӷ is the polarizability 

or the electric susceptibility of the crystal as given by  

 

 …
Ὡ‗

“άὧ
” ὶӶ 1.26.  

 

where Ὡ is the electric charge, ‗ the wavelength, Í the mass of the electron, ὧ the speed 

of light in vacuum and ” ὶӶ is the variable electron density given by the formula 

 

 ” ὶӶ
ρ

ὠ
ὊὩ ẗӶ 1.27.  

 

where ὠ is the volume of the unit cell and the assumption that the electron density is 

strongly associated to the atomic sites, i.e., the inner electrons dominate has been made. The 

crystal can be therefore considered as a structure with an anisotropic periodic complex 

polarizability.  

The electric field within the crystal must obey Maxwellôs equations, thus the resulting 

electromagnetic field is the sum of plane waves, i.e.,  

 

 

Ὀ Ὡ Ὀ Ὡ ẗӶ 

Ὄ Ὡ Ὄ Ὡ ẗӶ 

1.28.  

 

which represent the total electric displacement and magnetic field at time Ô and position 

ὶ for a total of ά waves propagating within the crystal. ’ ὧ
‗ is the frequency of the 

electromagnetic wave while ὑ  is the scattered wave vector satisfying the Laue equation. 

Ὄ ȟὈ and ὑ  have to be determined on the basis of the boundary conditions and Maxwellôs 

equations.  
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1.2. Theory of X-ray diffraction in mosaic and curved crystals 

 

1.2.1. Definitions and assumptions 

 

In this section two physical quantities should be introduced because they will be 

employed in the following. Such quantities, typically used to qualify the diffraction properties 

of a crystal, are reflectivity and diffraction efficiency. According to Ref. [1.2, 1.14], 

reflectivity is defined as the ratio of diffracted beam intensity over incident beam intensity 

while diffraction efficiency is the ratio of diffracted beam intensity over the transmitted one 

when no diffraction occurs.  

In the previous section it was assumed that an incident wave entered a crystal through a 

plane boundary and produced a diffracted wave inside the crystal. In fact, the diffraction 

inside the crystal can either occur near the surface, this being referred to as Bragg geometry or 

ñin volume", while the beam is propagating through the entire crystal (Laue geometry, see 

Fig. 1.5). Indeed, considering a parallel-plane bounded crystal of thickness Ὕ with unlimited 

lateral dimension, the equations of the two boundary planes are ὲẗὶӶ π and ὲẗὶӶ Ὕ. 

Although the incident wave enters the crystal through the plane ὲẗὶӶ π, the diffracted wave 

may emerge either through the plane ὲẗὶӶ π or through ὲẗὶӶ Ὕ. Because the boundary 

conditions are different, this distinction is sharp and gives rise to the two geometries, i.e., the 

Bragg and Laue case respectively. 

 
Figure 1.5: Distinction between Laue and Bragg geometries [1.1]. 

 

Since the framework of this thesis will mainly deal with X-ray diffraction in the Laue 

case, theoretical formulas in the following sections will be given for the Laue geometry.   

 

1.2.2. Mosaic crystals 

 

Mosaic crystals have been described by using Darwinôs model [1.15], i.e., as an 

assembly of small perfect crystals, the crystallites, each slightly misaligned with respect to 
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each other according to an angular Gaussian distribution. For mosaic crystals the reflectivity 

is given by the formula [1.1, 1.14] 

 

 

ὶ
ρ

ς
ρ Ὡ ȹ Ὡ  

 

1.29.  

where the second factor is for diffraction efficiency, and the latter is the attenuation 

factor due to linear absorption ʈ within the crystal. Ὕ is the crystal thickness traversed by the 

radiation, ῳ— the difference between the angle of incidence and the Bragg angle —  and 

ὡ ῳ— the distribution function of crystallite orientations, namely 
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1.30.  

where    is the mosaicity of the crystal, i.e. the angular distribution of the crystallites. 

Finally, ὗ represents the integrated intensity diffracted by a single perfect crystal per unit of 

thickness. Considering the kinematical theory approximation [1.1], ὗ is simply given by 

 ὗ
“Ὠ

ȿ ÃÏÓ—
 1.31.  

 

  

 

where Ὠ  is the Ä spacing of planes ὬὯὰ and Ώ  the extinction length as defined by 

Authier [1.4] for the Laue case.  

 

 

 

1.2.3. Curved crystals  

 

Crystals having curved diffracting planes (CDP) are nowadays under investigation by 

the scientific community as an innovative concept because they appear very useful for several 

applications spanning from astrophysics to nuclear medicine [1.16-1.22].  

Theory of X-ray diffraction in CDP crystals was widely developed in the past half 

century in the frame of dynamical theory of diffraction, with particular contribution by C. 

Malgrange [1.23]. The equations given by Malgrange represent an extension of the PPK 

theory of diffraction in distorted crystals [1.24, 1.25] for the case of a large and homogeneous 
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curvature. In this theory, the deformation of diffracting planes is described by the strain 

gradient ♫ which, in the case of uniform curvature, can be written as 

 

 ‍
ɋ

Ὕ‏
 1.32.  

 

where ɋ is the FWHM of the angular distribution of planes, i.e. the bending angle of the 

crystal and ‏  the Darwin width, namely the angular range around the Bragg angle for a flat 

crystal where diffraction is possible. When the orientation of the diffracting planes 

consistently changes over an extinction length owing to its curvature, the probability of 

diffraction parallel to the incident beam drops, so that Eq. 1.32 holds. Formally, this occurs 

when the strain gradient ɼ is larger than a critical value ‍  “ςΏ. The reflectivity for a 

curved crystal in Laue geometry is given by  

 

 

ὶ ρ Ὡ Ŭ Ὡ  

 

1.33.  

where the first factor is for diffraction efficiency, and the latter is the attenuation factor 

due to linear absorption ɛ throughout the crystal. Here ‌ is interpreted as the angular variation 

of the diffracting planes over the extinction length (in unit of Darwin width) and can be 

expanded as  

 

 ‌
ȿ́‍ȿ

ς‍

ɋȿ

ὝὨ
 1.34.  

 

 

Thereby, the reflectivity becomes  

 

 

ὶ ρ Ὡ ɋȿ Ὡ  

 

1.35.  

It is worth noting that there are two main differences between diffraction properties of 

mosaic and CDP crystals. Firstly, perfect crystals thicker than the extinction length and 

mosaic crystals suffer a maximum diffraction efficiency of 50% because of re-diffraction of 

the incident beam onto lattice planes (Fig. 1.6a). Conversely, curved crystals prevent this 
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effect due to continuous change of the incidence angle so that only a single diffraction occurs 

onto curved crystalline planes (Fig. 1.6b). Hence, diffraction efficiency in CDP crystals can 

ideally reach the unity. Secondly, unlike for mosaic crystals, which normally exhibit a 

Gaussian-like reflectivity passband, a curved crystal offers a continuum of possible diffraction 

angles over a finite range, leading to a rectangular-shape energy passband directly owing to 

its curvature.  

 

 
 Figure 1.6: X-ray diffraction in Laue geometry in case of an unbent (a) and of a bent crystal (b). 

 Multiple reflections in case (a) results in maximum 50% diffraction efficiency while in case (b) 

 diffraction efficiency can reach 100% [1.17].  
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2. Equipment for measuring diffraction 

patterns 
2.1. High-resolution X-ray diffractometer  (HRXRD)  

 

At Sensors and Semiconductor Laboratory (SSL, Ferrara, Italy), a high-resolution X-ray 

diffractometer (HRXRD, XôPert Pro MRD XL PANalytical
TM

) has been used for structural 

characterization of semiconductor crystals and ceramic materials.  

The instrument, as illustrated in Fig. 2.1, consists of basic features: an X-ray source, incident 

beam conditioning, sample stage and diffracted beam optics. The nature of these features have to be 

selected to best meet the needs of the material property to be analyzed.  

 

 
Figure 2.1: the high-resolution X-ray diffractometer at SSL (Ferrara, Italy)  [2.1]. 

 

2.1.1.  X-ray source  

 

In a laboratory source of X rays, i.e., X-ray tube (see Fig. 2.2), photons are generated by 

electron energy transitions to the innermost electron orbitals in a solid and are characteristic of the 

atom concerned. The emission lines arise from excitations that transfer sufficient energy to remove 

an inner electron and allow the more loosely bound to transfer to the vacant inner states. As with 

any vacuum tube, there is a cathode, which emits electrons into the vacuum and an anode to collect 

the electrons, thus establishing a flow of electrical current, known as the beam, through the tube. A 

http://en.wikipedia.org/wiki/Cathode
http://en.wikipedia.org/wiki/Anode
http://en.wikipedia.org/wiki/Charged_particle_beam
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high voltage power source, for example 30 to 150 kV, is connected across cathode and anode to 

accelerate the electrons. The X-ray spectrum depends on the anode material and the accelerating 

voltage. 

 

 
Figure 2.2: sketch of X-ray tube. 

 

For the diffractometer under study, the material of the anode is copper, thus generating a 

spectrum of radiation as shown in Fig. 2.3.  

 

 
Figure 2.3: the Cu radiation spectrum.  

 

 

For maximum intensity of the beam and focus stability, typical values of voltage and current 

are 45 kV and 40 mA, respectively.  

http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/X-ray
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The filament of the X-ray tube is a small linear coil and its dimension partially defines the 

focus, being approximately rectangular in shape. The advantage of this shape is that the projection 

normal and parallel to the long axis produces two very useful configurations of the X-ray source 

(see Fig. 2.4), i.e., line and point focus. Depending on the geometry of the focus of the anode, the 

thermal load from high-energy electrons impacting onto the anode can be very high, therefore, a 

balance between focus size and power is strictly necessary. Nevertheless, efficient cooling is used 

for correct operation of the X-ray tube. 

 

 
Figure 2.4: the different projections available from the HRXRD [2.1]. 

 

 

2.1.2. Incident beam conditioning  

2.1.2.1. Incident beam slits and filters  

 

In order to reduce the divergence of the X-ray beam, thus the irradiated length of the sample 

under analysis, incident beam slits with variable size are normally used during measurements. 

Indeed, divergence slits are fitted in the incident beam path to control the equatorial divergence of 

the beam and thus the amount of sample that is irradiated by the X-ray beam. In particular, the size 

of the divergence slit can be set to one of these fixed values: ρςϳÁȟρτÁϳ ȟρρφÁϳ  and ρσςÁϳ . 

Moreover, it is also possible to adjust the beam size by means of two knobs within the accessory 

ñCrossed Slits Assemblyò. The knobs, one vertical and one horizontal, allow a gap of the aperture 

between 0 and 10 mm to be set. The knob scales are graduated in steps of 20 µm, thereby a size of 

the beam as small as ςπςπ µm
2
 can be achieved. The knob nearest to the X-ray tube controls the 

width of the beam while the knob furthest away from the tube controls the height of the beam. 

In order to prevent the saturation of the detector due to a high photon flux, especially when 

the detector is positioned along the path of direct beam, absorbing filters or automatic beam 

attenuator placed in front of the X-ray source are required. However, by placing an absorbing 

material of an appropriate thickness, that has an absorption edge very close to the characteristic 

radiation of the X-ray tube, the spectral distribution can be dramatically changed, thus improving 

working operation of the whole diffractometer. In fact, as seen in Fig. 2.3, the X-ray source has 

several characteristic peaks due to the ὑ‌ doublet and a complex ὑ‍ line though with lower 

intensity. Because several radiation peaks may add complications to diffraction patterns of samples 
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under analysis, the filter must be chosen in such a way that its elemental material has an absorption 

edge just on the high side of the ὑ‍ line. In particular, for the Cu anode tube, nickel fits the 

requirement, so that the ὑ‍ line is almost completely eliminated but also the broad white radiation 

is reduced and a sharp absorption edge can be seen.  

A parabolic X-ray mirror (see Fig. 2.5), just positioned after the filter, enhances the 

performance because it parallelizes the beam from the focus by accepting nearly 0.8° of divergence 

and thus the Cu ὑ‍ is virtually eliminated (only 0.5% diffracted).  

 
Figure 2.5: sketch of the parabolic X-ray mirror.  

 

On the other hand, the energy difference in the Ὧ‌ doublet is small, thus high-energy 

resolution is required to separate these contributions. With this aim, a high-resolution crystal 

monochromator is used, its features being described in the following section. 

 

2.1.2.2.  Monochromator  

Depending on the geometry of the tube, i.e., either line or point focus, the monochromator 

(see Fig. 2.6) of the HRXRD uses four symmetric 220 or 440 reflections from two channel-cut Ge 

crystals with (110) faces.  

 

 
 

Figure 2.6: scheme of the Bartels monochromator 

 

The beam is just conditioned by four diffracting crystals arranged according to the so-called 

Bartels monochromator. Indeed, as depicted in Ref. [2.2], each of the crystals acts as a double-

crystal diffractometer in the (+, ï) configuration. In the first channel-cut crystal, the first reflection 

passes a wide range of wavelengths, but each wavelength is diffracted at a particular angle. The 
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second reflection accepts this entire wavelength spread, but bends the beam back into line with the 

source beam. The third reflection (from the first surface of the second channel-cut crystal) can 

accept a narrow piece of this spectrum, because this crystal is antiparallel with the second and its 

acceptance angle for a particular wavelength is approximately the Darwin width for this reflection. 

The fourth reflection brings the beam back into the line of the source beam. Therefore, the 

monochromator produces a conditioned beam with a divergence and wavelength spread that are 

both determined by the Darwin width of the reflections from the channel-cut crystals.  

In particular, by using Ge 440 reflections, the conditioned beam exiting the monochromator 

has a divergence of few arcsec and a monocromaticity of about  
ɿ
ʇ υ ρπ .  

2.1.3. Sample stage  
 

The sample stage of the HRXRD is a goniometer having optical encoders on the axes, leading 

to angular resolution of about ρπ  degrees. The angles associated with the diffractometer 

movements are shown in Fig. 2.7.  

 

 
Figure 2.7: angles associated with the HRXRD movements [2.1]. 

 

The ʔ tilt axis allows for 180° rotation and the ה rotation axis, being normal to sample 

surface, can rotate through 360°. Sample can also be translated by xyz stage. The ςʖǋangle has a 

defined zero angle related to the direction of incident beam, while the ʖ angle can be conveniently 

be defined with respect to sample surface, this latter supposed to be flat.  

2.1.4.  X-ray detector  

To reveal the energy of incident photons, the X-ray diffractometer at SSL uses a proportional 

gas counter, which is one of the most reliable detectors capable to record every X-ray photon and 

produce a measurable signal proportional to the flux of photons over a large range. Its scheme is 

shown in Fig. 2.8 and the working principle is the following: in a proportional counter the fill gas of 

the chamber which is usually an inert gas, to prevent rections, is ionised by incident radiation. 

http://en.wikipedia.org/wiki/Inert_gas
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Indeed, an ionizing particle entering the gas collides with a molecule of the inert gas and ionises it 

to produce an electron and a positively charged atom, commonly known as an "ion pair". As the 

charged particle travels through the chamber, it leaves a trail of ion pairs along its trajectory, the 

number of which is proportional to the energy of the particle if it is fully stopped within the gas.  

 

 
Figure 2.8: the proportional gas detector. The incoming photon impinges onto an X-ray transparent Be window 

and ionizes the gas inside the chamber. Electrons and ions are accelerated by an intense electric field towards the 

anode and cathode, respectively, creating further impact ionization events and thus an electric signal being 

proportional to the energy of the incoming photon [2.1]. 

 

Indeed, to obtain a highly efficient counter, the absorption of X-ray photons must occur 

within the chamber and this fact partially determines the choice of the inert gas. In particular, for 

the case of the HRXRD at SSL, a gas of Xe is employed, giving about 93% of absorption efficiency 

for X rays coming from the Cu X-ray tube. Further advantage of the usage of Xe as inert gas is the 

creation of electrons owing to Auger process, which is the favoured absorption mechanism for 

reliable counting. Finally, one of the most important aspects of any detector is the relationship 

between the signal and the incoming photon flux. Fig. 2.9 highlights the good energy resolution of 

the detector, for a stable and proportional response.  

 



 
 

31 

 
Figure 2.9: the energy distribution for discriminating CukŬ X rays with the proportional detector [2.1].  

. 

2.1.4.1. Combination with scattered beam analyzer 

In order to reduce the angular acceptance of X-ray beam scattered from sample, thus 

increasing the instrumental resolution, an analyzer crystal is positioned between sample and 

detector. The analyzer consists of two channel-cut Ge (220) crystals oriented in such a way to 

diffract the beam from the specimen, with an angle of acceptance equal to the Darwin width of the 

crystals. Indeed, by selecting only parallel X rays scattered from the sample, i.e., those which 

satisfy the Bragg condition for the analyzer, the angular acceptance is significantly reduced. The 

scheme of the analyzer is depicted in Fig. 2.10.  

 

 
Figure 2.10: scheme of the analyzer crystal made by two channel-cut Ge (220) crystals. The beam undergoes 

three internal reflections within the analyzer before entering the detector. Indeed, odd numbers of reflections 

reduces the chance of the directly scattered beam from reaching the detector. Only X-rays which satisfy Bragg 

condition for the analyzer will enter the detector. For the analyzer of the HRXRD acceptance angle is about 11 

arcsec. 
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A further method of controlling the divergence of the scattered beam is the usage of a 

parallel-plate collimator as analyzer (see Fig. 2.11). In this case, the advantage is that small 

divergence can be preserved while still maintaining high intensity of photons by using a large X-ray 

source. Capture of scattering from large regions on the sample is allowed, and this method is often 

used in applications of thin film analysis, where very low angle of incidence are required, or powder 

diffraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.11: on the left side, sketch of the parallel-plate collimator while the right side shows the variation of 

divergence as a function of the separation between plates [2.1]. 

 

2.1.5. Configuration of the HRXRD for characterization of samples by rocking 

curve  

The rotating crystal method, which has been described in previous chapter (section 1.1.2.), 

represents the basis of X-ray characterization of samples at SSL by rocking curve (RC) 

measurement. Indeed, a RC measurement involves rotating the specimen in the monochromatic X-

ray beam in order to plot the diffracted intensity as a function of the incidence angle of the beam.  

The configuration of the HRXRD for measuring a RC, thus a diffraction profile of the sample 

under analysis, is depicted in Fig. 2.12.  
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Figure 2.12: configuration of the high-resolution X-ray diffractometer at SSL for measurement of a RC of 

sample in Bragg geometry with respect to incident beam. 

 

Either point or line focus can be used as geometry of the X-ray source. Because in line focus 

configuration the divergence is higher than for point focus, the X-ray mirror is required to 

parallelize the beam. Then, the monochromator controls the scattering plane divergence and 

wavelength dispersion, producing a well-defined incident beam. The analyzer crystal only passes 

scattered X rays coming from the sample in the specific direction defined by its rotation about an 

axis common with the sample rotation. However, it is worth noting that depending on the 

application of the specimen under analysis, the analyzer can be used or not, this latter case being the 

so-called open detector mode. As an example, with the aim to reveal mosaic crystallites in an 

imperfect sample, the introduction of the analyzer crystal before the detector allows for scanning 

along the direction normal to the plane that is sensitive to strain, because it selects only parallel X 

rays coming from the sample. Therefore, it results possible to separate the mosaic block orientation 

from other contributions of imperfections of the specimen, e.g., bending, strain variation and 

intrinsic scattering, consequently revealing mosaicity of the sample. On the other hand, an open 

detector scan would result in a very broad profile, many times that of the intrinsic scattering profile 

of the sample, because all contributions are mixed, the major contributing factor to the width of an 

open detector scan being normal to this direction. In Fig. 2.13, RCs obtained with the HRXRD 

show the difference between a scan in open detector mode and that with an analyzer.  
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Figure 2.13: RCs obtained on a GaAs sample in open detector mode (black dotted line) and with analyzer (black 

line) by using the HRXRD at SSL.  

 

 

2.2. Beamline ID15A at European Synchrotron Radiation Facility 

(ESRF) 
 

At European Synchrotron Radiation Facility (ESRF, Grenoble, France, see Fig. 2.14), 

beamline ID15A has been used to carry out experiments of X-ray diffraction on curved crystals of 

Si and Ge material.  

The working principle of synchrotron light source is very different from that of an X-ray tube. 

A synchrotron is a storage ring for electrons, which are contained by magnetic fields to prevent 

excessive divergence and consequent energy loss. When the electrons are deviated from a straight 

line using auxiliary components such as bending magnets and insertion devices (undulators or 

wigglers), the consequent acceleration towards the centre of the curve creates an energy orbital 

jump thus producing electromagnetic radiation. If this energy change is large, then X rays can be 

produced. The X-rays from the synchrotron are emitted tangentially from the radius and 

concentrated into a narrow cone with the electric field vector predominately confined to the plane of 

the orbit, i.e., the beam is horizontally polarised. 



 
 

35 

 

 

Figure 2.14: European Synchrotron Radiation Facility (Grenoble, France) 

 

On beamline ID15A, high energy, high flux and flexibility in the energy tuning are well 

combined with significantly high spatial and spectral beam definition. For X-ray characterization of 

curved Si and Ge crystals, a highly monochromatic and quasi-parallel beam (50×50 µm
2
 or 100×50 

ɛm
2
) was tuned to the desired energy, ranging from 150 to 700 keV. This was done thanks to a two-

reflection Laue Si (111) unbent monochromator with a sharp monochromaticity of the order of   

ɝὉ
Ὁ ς ρπ. A high-purity Ge detector was used to reveal X rays. The beam intensity was 

constantly monitored by the current of electrons in the storage ring of the synchrotron. The 

experimental setup at beamline ID15A is shown in Fig. 2.15.  

 
Figure 2.15: experimental set-up at the beam line ID15A at the ESRF 

 

The characterization of the samples was carried out by performing RCs in Laue geometry, 

i.e., by recording either the transmitted or diffracted beam intensity while the crystal was rotated in 

the beam around the position where the Bragg condition is satisfied. Transmitted beam intensity 

was recorded by keeping the sample in diffraction condition and shifting the detector in such a way 

to measure the beam intensity passing through the crystal without undergoing diffraction. 

Moreover, the sample holder was set far enough from the detector in order to allow for sufficient 

separation of diffracted and transmitted beams even at highest energy. Diffraction and transmission 

RCs were recorded one after the other, resulting in two complementary curves as a function of the 

beam incidence angle (Fig. 2.16). An advantage of this configuration is that diffracted and 
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transmitted RCs exhibited diffraction efficiency of the sample under analysis. Efficiency is defined 

as in Ref. [2.3, 2.4] (see also chapter 1), namely the ratio of diffracted beam intensity over the 

transmitted one.  

The FWHM of the RC is a direct measurement of the angular distribution of diffracting planes 

(hereinafter referred to as angular spread), namely the bending angle of the crystal. In Laue 

geometry the Bragg angles are small and therefore a possible broadening of the RCs due to a 

variation of the lattice parameter can be negligible. Furthermore, the shape of the RCs was not 

modified by extinction phenomena, which were negligible in such curved crystals.  

 

 
Figure 2.16: RCs obtained at beamline ID15A on a Si CDP crystal [2.5]. The energy of the photon beam  was 

150 keV. Filled circles plot the intensity of the transmitted beam, whereas the empty circles plot the  intensity of 

the diffracted beam. The FWHM of the RCs is of the order of crystal bending. 

 

2.3. Hard X -ray diffractometer at Institute Laue Langevin (ILL)  
 

At Institute Laue Langevin (ILL, Grenoble, France) X-ray characterization on two stacks of Si 

curved crystals has been carried out by using a hard X-ray diffractometer (see Fig. 2.17) based on 

the method of X-ray focusing for transmission (Laue) geometry [2.6-2.9]. A schematic diagram of 

this technique is shown in Fig. 2.18. The diffractometer uses a polychromatic and divergent X-ray 

beam (energy range between 80 and 450 keV) emitted from a high-voltage and fine-focus X-ray 

tube commonly used for industrial radiographs. Since Bragg angles were small (0.5 ï 1 degree), 

diffraction peaks were located close to the direct beam, thus allowing the observation of peaks from 

several crystallographic planes. These latter were observed thanks to a high-resolution and sensitive 

X-ray image intensifier coupled with a CCD camera, featuring a spatial resolution of about 0.35 

mm (pixel size).  

For the experiment on curved Si multi-crystals, the distance between sample and generator 

focus, this latter being 1×1 mm
2
, was set to be 4.45 m, thus determining a lattice tilt maximum 
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sensitivity of 8.1 arcsec. Moreover, a slit with variable size positioned just before the sample 

delimited the width of the X-ray beam.  

 

  
Figure 2.17: left side: X-ray generator and diffractometer. Right side: sample orientation table and  detector.  

 

 

 

 
Figure 2.18: schematic representation of the in-plane focusing of a divergent polychromatic x-ray beam by a 

crystal in Laue geometry. If the distance from the source to the crystal is equal to that from the crystal to the 

focal point, all diffracted rays converge to a point and a distribution of wavelengths is selected [2.10]. 

 

 Under the assumptions highlighted in Ref. [2.11], for a diffractometer based on the method 

of X-ray focusing in Laue geometry with a divergent and polychromatic beam, all diffracted rays 

converge to a point (Fig. 2.18) and a distribution of wavelengths from the white beam is selected. 

The focusing effect only occurs in the scattering plane while in the perpendicular direction the 

radiation propagates straight. In fact, scattering from a perfect thin crystal will result in a line profile 

onto a detector located at the focusing position. The FWHM of the intensity Gaussian profile 

perpendicular to the line is solely determined by the size of the X-ray source and the thickness of 

the crystal. Conversely, for a curved crystal the width of the intensity profile is also related to the 



 
 

38 

deformation of diffracting planes, i.e., to its bending angle [2.5]. In particular, from a crystal with 

CDP the width of a converging or diverging beam at the detector (small-angle approximation) is 

given by  

 

 

‏ ὥ ςὸ— ὸ— Ὢ
ὰ

Ὑ
 

2.1.  

 

where the ± sign holds for the converging or diverging mode of diffraction, a is the size of the 

X-ray source, t is the thickness of the crystal (traversed by radiation), f is the sample-to-detector 

distance, l is the length of the crystal which undergoes bending and R is the curvature radius of the 

crystal. The term ςÔʃ is the contribution of broadening due to the thickness of the sample, Ôʃthe 

broadening due to the variation of incidence angle while Æ represents the bending contribution. 

This result has been obtained by revisiting the formulas of the focal spot size in Refs. [2.11, 2.12].  

A typical diffraction pattern produced by the hard X-ray diffractometer is shown in Fig. 2.19.  

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Diffraction patterns recorded from a Si crystal with CDP (a). Horizontal average cross-section of 

the focal spot corresponding to (111)-diffraction is highlighted (b). 
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3. X-ray characterization of curved Si and Ge 

crystals for realization of a Laue lens 

 
 

3.1. A Laue lens for astrophysics  
 

A Laue lens is an optical component to focus hard X- and soft gamma-ray photons through 

Bragg diffraction in Laue geometry within a properly arranged array of crystals disposed as 

concentric rings with radii spanning a certain range [3.1-3.3] (see Fig. 3.1). For a Laue lens a 

significantly important field of application is represented by astrophysics. In fact, in hard X-ray 

astronomy many celestial sources emitting high-energy photons are very interesting candidates for 

investigation. As an example, a hot topic in astrophysics that may benefit from usage of a Laue lens 

is high-precision mapping of celestial positron sources [3.4], through the study of the e+ - eī 

annihilation line at 511 keV. Despite a 511 keV emission has been observed for more than 30 years 

towards the Galactic center [3.5], the origin of the positrons still remains a mystery. Stellar 

nucleosynthesis [3.6-3.8], accreting compact objects [3.9-3.12], and even the annihilation of exotic 

dark matter particles [3.13] have all been suggested, thus a deeper investigation has to be done. A 

Laue lens would enable the study of the location of positron sources in our Galaxy by concentrating 

the annihilation line at 511 keV with high resolution, thus bringing new clues concerning these still 

elusive sources of antimatter. As another, the focalization of 847-keV photons produced by the 

decay chain of the radionuclide 56Ni would enable the study of Type Ia Supernovae events, thus 

unveiling the physical processes in these cosmological standard candles [3.14].  

It is widely acknowledged by the scientific community that a Laue lens would achieve a gain 

in sensitivity by one or two orders of magnitude with respect to existing telescopes in the hard X-

ray/soft gamma-ray domain (>100 keV). In fact, in order to improve our knowledge of the violent 

celestial processes responsible of the emission of high-energy photons more sensitive telescopes are 

needed. Current instruments operating in this part of the electromagnetic spectrum do not use 

focusing optics. They reconstruct the incidence direction of detected events thanks to either an 

aperture modulation (coded mask) or by tracking the multiple (Compton) interactions of photons in 

a sensitive volume [3.15]. The common point of these two techniques is that the signal is collected 

onto an area which is itself the sensitive area. With the existing kind of telescopes more sensitive 

means larger in order to collect more signal. However, the improvement of sensitivity only scales 

with the square root of the collection surface since the instrumental background scales with the 

volume of detectors. This is why it appears impossible to achieve the required sensitivity leap of a 

factor 10-100 with the existing principles of soft gamma-ray telescopes. On the other hand, by 

concentrating photons from a large collection area of a crystal diffraction lens onto a very small 

detector volume, background noise would be extremely low leading to a significantly high gain in 

sensitivity.  
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Figure 3.1: sketch of a Laue lens. X- and gamma-ray photons are diffracted by an array of crystals,  disposed as 

concentric rings spanning a certain energetic range, towards a common focal point [3.15]. 

 

Since in most cases a Laue lens is requested to concentrate radiation over a broad energy 

range, a typical component for wide-passband focusing is a mosaic crystal [3.16]. However, this 

latter suffers a 50%-limit in diffraction efficiency. With this aim, crystals with curved diffracting 

planes (CDP) have been deeply studied as high-efficiency optical components for the realization of 

a Laue lens for satellite-borne experiments. CDP crystals exhibit a uniform energy distribution with 

a passband proportional to the curvature and their diffraction efficiency can ideally reach the unity 

[3.17, 3.18].  

For fabrication of a CDP crystal, several techniques have been worked out. Bending can be 

accomplished by mechanical means, i.e., by deforming a perfect single crystal [3.19] through an 

external device. As an example, mechanically bent crystals have been used in synchrotrons for 

many years as high-efficiency monochromators. However, the usage of an external device leads to 

excessive weight, which is to be avoided especially in satellite-borne experiments with a Laue lens. 

Thus, self-standing CDP crystals are mandatory for practical implementation of a focusing 

telescope as a Laue lens. Such curved crystal can be produced by applying a thermal gradient to a 

perfect single crystal [3.20] but, this method is energy consuming and not adapted to a space-borne 

observatory as well. CDP crystals can also be obtained by concentration-gradient technique, i.e., by 

growing a two-component crystal with graded composition along the growth axis [3.20ï3.23]. 

However, crystals bent by such a method are not easy to manufacture, this making the technique 

hardly applicable for a Laue lens application, for which serial production of crystals should be 

envisaged.  

It was proven that a promising technique for bending crystals is surface grooving [3.24, 3.25]. 

Grooves manufactured on the surface of a crystal by a diamond saw induce a permanent curvature 

within the crystal, with no need for external device. This technique is based on plastic deformation 

of the crystal induced by the grooves. As a result of deformation, a permanent curvature is 

produced, resulting in self-standing CDP crystals. Such method is cheap, simple and very 

reproducible, thus compatible with mass production.  



 
 

43 

Within the framework of the ñLaue projectò as financed by the Italian Space Agency, at 

Sensor and Semiconductor Laboratory (SSL, Ferrara, Italy) silicon and germanium plates are 

plastically deformed by grooving one of their major surfaces with very good control of the 

curvature. Grooved crystals were characterized at ESRF (Grenoble, France) under X-ray diffraction 

experiments and exhibited significantly high performance up to 700 keV, peaking 95% at 150 keV 

[3.18]. Moreover, it resulted that measured angular spread of the diffracted beam was always very 

close to the morphological curvature of the sample under investigation, proving that the energy 

passband of CDP crystals can be controlled by simply imparting a selected curvature to the sample. 

Next sections describe the possible arrangements of CDP crystals in a Laue lens, their 

fabrication through surface grooving technique and experimental results of X-ray characterization 

obtained on Si and Ge grooved crystals, showing their functionality as optical elements for a Laue 

lens. 

 

3.2. Configurations of crystals in a Laue lens  
 

For the sake of better understanding, some concepts about diffraction in curved crystals are 

reviewed.  

CDP crystals are innovative for the realization of a Laue lens because they offer a continuum 

of possible diffraction angles, directly owing to their curvature. Thus, it becomes possible to diffract 

X-rays over a broad energy passband. According to dynamical theory of diffraction [3.26], their 

reflectivity can be significantly high [3.17, 3.18], being 

 

 

ὶ ρ Ὡ Ὡ  

 

3.1.  

where the first factor is for diffraction efficiency, and the latter is the attenuation factor due to 

linear absorption ʈ throughout the crystal. 4 is the crystal thickness traversed by radiation, Ä  the 

d-spacing of diffracting planes (hkl) and ɱ the angular spread, i.e., the bending angle of the crystal. 

ʃ is the Bragg angle and ɤ  the extinction length as defined in Ref. [16]. For curved Si (111) 

crystal with radius of curvature of the order of 10
2 

meters, 4 ρÃÍ and photon energy of the 

order of 10
2
 keV, a reflectivity about 70 - 80% can be obtained. 

In Ref. [3.25], a model, which completely relies on the theory of elasticity, has been 

developed to predict the curvature of grooved samples, thus obtaining the appropriate value of ɱ 

that maximizes the reflectivity of a Laue lens.  
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3.2.1. Geometry 1: stack of equally curved crystal plates  
 

With the aim of wide-passband focusing, CDP crystals must be disposed vs. impinging 

photons as in Fig.3.2a, hereinafter called ògeometry 1ò. In particular, in order to maximize 

diffraction efficiency of the whole lens, self-standing curved crystal plates thicker than some 

millimeters are required. However, realization of such thick CDP crystals is technologically 

demanding.  

A possible solution can be a multi-crystal, i.e., a stack of equally curved crystal plates, aligned 

with each other with high accuracy (Fig. 3.2a) [3.27, 3.28]. In a Laue lens scheme, the stack should 

be positioned with the diffracting planes parallel to the major surface of the crystalline plate and 

perpendicular to the lens surface. Photons enter the stack nearly parallel to the diffracting planes, 

suffer diffraction and undergo focusing onto the detector. This technique opens up a viable way to 

build up optical components for X- or gamma-ray diffraction without any size constraint, which 

may be useful in Laue lens application, where weight constraint is mandatory.  

 

 
Figure 3.2: (a) Geometry 1. (b) A stack of plate-like curved crystals is proposed as an optical component for  a 
Laue lens in geometry 1. (c) Geometry 2 with a quasi-mosaic crystal as optical element for focusing  through a 
Laue lens. Arrows represent X-ray beam. In both geometries, curved diffracting planes are the  (111) due to 
their high reflectivity. 

 

3.2.1.1. Misalignment effects  

 

Proper bonding of neighboring plates in a stack (Fig 3.3a) is mandatory to ensure a good 

alignment of the diffracting planes and thus a well-defined focal spot on the detector. In fact, 

neighboring plates can be affected by a misalignment with respect to each other as shown in Figs. 

3.3b, c and d. With this regard, let us consider a parallel x-ray beam undergoing Laue diffraction 

from curved crystalline planes (parallel to the major surface of the plates), which are misoriented by 

a constant angle ʒ with respect to each other. In the case of Fig. 3.3b, if a photon with wavelength ʇ 

is diffracted at Bragg angle, ʃ, by one of the crystalline plates, another photon impinging onto the 

other plate at the same point is being diffracted provided that its wavelength is 
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3.2.  

where ʒ is the angle of misalignment between the plates under small-angle approximation. If 

instead one considers the misalignment as depicted in Fig. 3.3c, if a photon with wavelength ʇ is 

diffracted at ɗB by one of the crystalline plates, another photon impinging onto the other plate at the 

same point is being diffracted provided that its wavelength is 
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3.3.  

 

For the case of photons impinging onto the plates misaligned as in Fig. 3.3d, the relationship 

between wavelengths reads 
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3.4.  

It turns out that misalignment is unimportant for an x-ray beam impinging as in Fig. 3.3d, less 

important for the configuration in Fig. 3.3c, while critical for the case in Fig. 3.3b. Therefore, for 

fabrication of a stack of plate-like curved crystals, special care must be paid to avoid this latter 

misalignment.  
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Figure 3.3: perfect bonding of neighboring plates in a stack is mandatory to ensure a good alignment of  the 

diffracting planes and thus a well-defined focal spot on the detector (a). For a parallel x-ray beam  (red arrow) 

undergoing diffraction from curved crystals with plates misoriented of an angle ű, the  misalignment is 

critical (b), less important (c) and indifferent (d). 

 

3.2.2. Geometry 2: quasi mosaic crystals  
 

The ñgeometry 2ò as in Fig.3.2c has been proposed in [3.29] because of the larger crystal 

surface exposed to the photon flux, which means fabrication of about 10
2
 samples vs. 10

3
-10

4
 

samples for geometry 1. The necessary curvature to yield CDP is provided by quasi-mosaic (QM) 

effect as a secondary curvature.  

Quasi-mosaicity is an anisotropic effect that manifests itself when a properly oriented crystal 

plate is bent along a given direction, i.e., quasi-mosaicity depends on the crystallographic 

orientation of the plate undergoing bending. Indeed, a primary curvature imparted to a crystal 

results in a secondary (quasi-mosaic) curvature of a different plane direction due to the quasi-

mosaic effect. The curvature induced by the phenomenon of quasi mosaicity has been studied in the 

framework of linear elasticity and can be predicted [3.29].  

Historically, quasi-mosaicity was discovered by Sumbaev in a seminal work [3.30]. More 

recently, this phenomenon was introduced by Ivanov [3.31] to bend Si crystals for steering high-

energy particles via coherent effects in crystals [3.32, 3.33].  

The use of QM crystals allows positioning of the crystals in a Laue lens in the same way as 

for mosaic crystals, i.e., with the diffracting planes perpendicular to the major faces of the crystal 

(Fig. 3.4). However, in Ref. [3.29] it has been shown that the signal-to-noise ratio attained for QM 

crystals can be about an order of magnitude larger than that for mosaic crystals, highlighting the 

functionality of exploitation of QM crystals in efficient focusing of high-energy photons in a Laue 

lens.  




































































































































