ItalianoClear Cookie - decide language by browser settings

Advanced gamma-ray spectrometry for environmental radioactivity monitoring

Xhixha, Gerti (2012) Advanced gamma-ray spectrometry for environmental radioactivity monitoring. PhD Thesis , Università degli studi di Ferrara.

PDF File

Download (8MB) | Preview


    The environmental radioactivity monitoring programs start in the late 1950s of the 20th century following the global fallout from testing of nuclear weapons in the atmosphere, becoming a cause of concern regarding health effects. Later, the necessity of world industrialization for new energy sources led to develop national plans on electricity production from nuclear technology, initializing in this context world wide exploration for fuel minerals: uranium exploration gained a particular attention in late 1940's in USA, Canada and former USSR and in 1951 in Australia with respective national plans. Nowadays there are about 440 nuclear power plants for electricity generation with about 70 more NPP under construction giving rise to the nuclear emergency preparedness of a large number of states (like Radioactivity Environmental Monitoring (REM) data bank and EUropean Radiological Data Exchange Platform (EURDEP). Furthermore, a lot of applications in the field of geosciences are related to the environmental radioactivity measurements going from geological mapping, mineral exploration, geochemical database construction to heat -flow studies. Gamma-ray spectroscopy technique is widely used when dealing with environmental radioactivity monitoring programs. The purpose of this work is to investigate the potentialities that such a technique offers in monitoring radioactivity concentration through three different interventions in laboratory, in-situ and airborne measurements. An advanced handling of gamma-ray spectrometry method is realized by improving the performances of instruments and realizing and testing dedicated equipments able to deal with practical problems of radioactivity monitoring. For each of these gamma-ray spectrometry methods are faced also the problems of calibration, designing of monitoring plans and data analyzing and processing. In the first chapter I give a general description for the common radionuclides present in the environment having a particular interest for monitoring programs. Three categories of environmental radionuclides classified according to their origin as cosmogenic, primordial and man-made are discussed. The cosmic rays continuously produce radionulides and also direct radiation, principally high energetic muons. Cosmogenic radionuclides are originated from the interaction of cosmic rays with stable nuclides present in the Earth’s atmosphere. Primordial radionuclides are associated with the phenomenon of nucleosynthesis of the stars and are present in the Earth’s crust. Man-made radionuclides commonly present in natural environments are principally derived from radioactive fallout from atmospheric nuclear weapons testing and peaceful applications of nuclear technology like nuclear power plants for electricity generation and the associated nuclear fuel cycle facilities. A relevant contribution, generally with local implication comes from the so called non-nuclear industries which are responsible for technologically enhancement of natural radioelements producing huge amounts of naturally occurring radioactive materials (NORM/TENORM). In the second chapter is described a homemade approach to the solution of the problem rising in monitoring situations in which a high number of samples is to be measured through gamma-ray spectrometry with HPGe detectors. Indeed, in such cases the costs sustaining the manpower involved in such programs becomes relevant to the laboratory budget and sometimes becomes a limitation of their capacities. Manufacturers like ORTEC® and CANBERRA produce gamma-ray spectrometers supported by special automatic sample changers which can process some tens of samples without any human attendance. However, more improvements can be done to such systems in shielding design and detection efficiency. We developed a fully automated gamma-ray spectrometer system using two coupled HPGe detectors, which is a well known method used to increase the detection efficiency. An alternative approach on shielding design and sample changer automation was realized. The utilization of two coupled HPGe detectors permits to achieve good statistical accuracies in shorter time, which contributes in drastically reducing costs and man power involved. A detailed description of the characterization of absolute full-energy peak efficiency of such instrument is reported here. Finally, the gamma-ray spectrometry system, called MCA_Rad, was used to characterize the natural radioactivity concentration of bed-rocks in Tuscany Region, Italy. More than 800 samples are measured and reported here together with the potential radioactivity concentration map of bed rocks in Tuscany Region. In the third chapter is described the application of portable scintillation gamma -ray spectrometers for in-situ monitoring programs focusing on the problems of calibration and spectrum analysis method. In-situ γ-ray spectrometry with sodium iodide scintillators is a well developed and consolidated method for radioactive survey. Conventionally, a series of self-constructed calibration pads prevalently enriched with one of the radioelements is used to calibrate this portable instrument. This method was further developed by introducing the stripping (or window analysis) described in International Atomic Energy Agency (IAEA) guidelines as a standard methods for natural radioelement exploration and mapping. We realized a portable instrument using scintillation gamma-ray spectrometers with sodium iodide detector. An alternative calibration method using instead well-characterized natural sites, which show a prevalent concentration of one of the radioelements, is developed. This procedure supported by further development of the full spectrum analysis (FSA) method implemented in the non-negative least square (NNLS) constrain was applied for the first time in the calibration and in the spectrum analysis. This new approach permits to avoid artifacts and non physical results in the FSA analysis related with the χ2 minimization process. It also reduces the statistical uncertainty, by minimizing time and costs, and allows to easily analyze more radioisotopes other than the natural ones. Indeed, as an example of the potentialities of such a method 137Cs isotopes has been implemented in the analysis. Finally, this method has been tested by acquiring gamma Ombrone -ray spectra using a 10.16 cm×10.16 cm sodium iodide detector in 80 different sites in the basin, in Tuscany. The results from the FSA method with NNLS constrain have been compared with the laboratory measurements by using HPGe detectors on soil samples collected. In the forth chapter is discussed the self-construction of an airborne gamma-ray spectrometer, AGRS_16.0L. Airborne gamma-ray spectrometry (AGRS) method is widely considered as an important tool for mapping environmental radioactivity both for geosciences studies and for purposes of radiological emergency response in potentially contaminated sites. Indeed, they have been used in several countries since the second half of the twentieth century, like USA and Canada, Australia, Russia, Checz Republic, and Switzerland. We applied the calibration method described in the previous chapter using well -characterized natural sites and implemented for the first time in radiometric data analysis FSA analysis method with NNLS constrain. This method permits to decrease the statistical uncertainty and consequently reduce the minimum acquisition time (which depend also on AGRS system and on the flight parameters), by increasing in this way the spatial resolution. Finally, the AGRS_16.0L was used for radioelement mapping survey over Elba Island. It is well known that the natural radioactivity is strictly connected to the geological structure of the bedrocks and this information has been taken into account for the analysis and maps construction. A multivariate analysis approach was considered in the geostatistical interpolation of radiometric data, by putting them in relation with the geology though the Collocated Cokriging (CCoK) interpolator. Finally, the potential radioelement maps of potassium, uranium and thorium are constructed for Elba Island.

    Item Type:Thesis (PhD Thesis)
    Date:29 March 2012
    Tutor:Fiorentini, Giovanni - Mantovani, Fabio
    Coordinator:Guidi, Vincenzo
    Institution:Università degli studi di Ferrara
    PhD:XXIV Anno 2009 > FISICA
    Divisions:Dipartimento > Fisica
    Subjects:Area 02 - Scienze fisiche > FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina)
    Uncontrolled Keywords:spettrometri gamma, radioattività ambientale, spettrometri gamma, rivelatori HPGe, rivelatori NaI(Tl),spettrometria gamma, mappe di distribuzione di U, Th e K, monitoraggio di 137Cs, gamma-ray spectrometry, Environmental radioactivity, HPGe detector, NaI(Tl) detector, full spectrum analysis, radiometric map of eU, eTh and K, 137Cs monitoring
    Deposited on:20 Feb 2013 15:41


    View ItemView Item