WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR p-EVOLUTION EQUATIONS

ALESSIA ASCANELLI, CHIARA BOITI, AND LUISA ZANGHIRATI

Abstract. We consider p-evolution equations in (t, x) with real characteristics. We give sufficient conditions for the well-posedness of the Cauchy problem in Sobolev spaces, in terms of decay estimates of the coefficients as the space variable $x \to \infty$.

1. Introduction and main result

Given an integer $p \geq 2$, we consider in $[0, T] \times \mathbb{R}$ the equation $Pu(t, x) = f(t, x)$, where P is a differential operator of the form

\begin{equation}
P(t, x, D_t, D_x) = D_t + a_p(t)D_x^p + \sum_{j=0}^{p-1} a_j(t, x)D_x^j,
\end{equation}

with $D = \frac{i}{t} \partial_t$, $a_p \in C([0, T]; \mathbb{R})$ and $a_j \in C([0, T]; \mathcal{B}^\infty)$ for $0 \leq j \leq p - 1$, (here $\mathcal{B}^\infty = \mathcal{B}^\infty(\mathbb{R}_x)$ is the space of complex valued functions which are bounded on \mathbb{R}_x together with all their x-derivatives). We are dealing with non-kovalewskian evolution operators; anisotropic evolution operators of the form (1.1) are usually called p-evolution operators.

The aim of this paper is to give sufficient conditions for H^∞ well-posedness of the Cauchy problem

\begin{equation}
\begin{cases}
P(t, x, D_t, D_x)u(t, x) = f(t, x) & (t, x) \in [0, T] \times \mathbb{R} \\
u(0, x) = g(x) & x \in \mathbb{R}.
\end{cases}
\end{equation}

The condition that a_p is real valued means that the principal symbol (in the sense of Petrowski) of P has the real characteristic $\tau = -a_p(t)\xi^p$; by the Laz-Mizohata theorem (cf. [M]), this is a necessary condition to have a unique solution, in Sobolev spaces, of the Cauchy problem (1.2) in a neighborhood of $t = 0$, for any $p \geq 1$.

We immediately notice that the case $p = 1$ corresponds to a kovalewskian operator of hyperbolic type. For $p = 2$ the operator is of Schrödinger type, for $p = 3$ we have the same principal part as the Korteweg-De Vries equation.

Literature about well-posedness in Sobolev spaces of the Cauchy problem for hyperbolic operators is really wide; coming up to $p \geq 2$, many results of well-posedness in Sobolev spaces are available under the assumption that the coefficients a_j of (1.1) are real (see, for instance, [A1], [A2], [AZ], [AC], [CC1], [CHR]). On the contrary, when the coefficients $a_j(t, x)$ for $1 \leq j \leq p - 1$ are not real, we only know results for $p = 2, 3$; all these results show that, in order to have a well-posed Cauchy problem in Sobolev spaces, a suitable decay in x for the imaginary part of the coefficients is needed. To be more precise, in the case $p = 2$ the problem of giving necessary and/or sufficient conditions for H^∞ well-posedness of (1.2) has been largely

2000 Mathematics Subject Classification. 35G10, 35A27.

Key words and phrases. p-evolution equations, H^∞ well-posedness, pseudo-differential operators.
investigated (see, for instance, [I1], [I2], [B], [KB]); in particular, in [I1] Ichinose states that a necessary condition for H^∞ well-posedness of the Cauchy problem for the operator
\begin{equation}
(1.3) \quad P = i\partial_t + \Delta + \sum_{j=1}^{n} b_j(x)\partial_{x_j} + c(x),
\end{equation}
with $b_j, c \in B^\infty$, is the existence of non-negative constants M, N such that for every $\varrho > 0$ the inequality
\begin{equation}
(1.4) \quad \sup_{x \in \mathbb{R}^n, \omega \in S^{n-1}} \left| \sum_{j=1}^{n} \int_{0}^{\varrho} \Re b_j(x + \theta \omega)\omega_j d\theta \right| \leq M \log(1 + \varrho) + N
\end{equation}
holds. This condition is also sufficient (cf. [I2]) only in the case of space dimension $n = 1$. A slightly stronger sufficient condition is given in [KB]: the Cauchy problem (1.2) for $p = 2$ and $a_2(t) = -1/2$ is H^∞ well posed if
\begin{equation}
(1.5) \quad \text{Im} a_1(t, x) = \mathcal{O}(\|x\|^{-\sigma}), \quad \sigma \geq 1, \quad \text{as } |x| \to \infty,
\end{equation}
uniformly with respect to $t \in [0, T]$. We explicitly notice that condition (1.5) for (1.1) is consistent with condition (1.4) for (1.3). This result has been generalized to the case $p = 3$ by Cicognani and Colombini in [CC2], where the authors prove that the Cauchy problem (1.2) is H^∞ well posed if:
\begin{align*}
|\text{Im} a_2| &\leq C a_3(t) \langle x \rangle^{-1}, \\
|\text{Im} a_1| + |\text{Im} D_x a_2| &\leq C a_3(t) \langle x \rangle^{-1/2}.
\end{align*}

Well-posedness results in Sobolev spaces for higher order 2-evolution equations are also available (see, for instance, [D], [T], [ACC], [CR]).

In this paper we generalize the results of [KB] and [CC2] to the case $p \geq 4$, proving the following:

Theorem 1.1. Let us consider the operator (1.1) with the following assumptions on the coefficients:
\begin{align*}
a_p &\in C([0, T]; \mathbb{R}), \quad a_p(t) \geq 0 \ \forall t \in [0, T] \\
a_j &\in C([0, T]; B^\infty), \quad 0 \leq j \leq p - 1 \\
(1.6) \quad |\text{Re} D^\beta_x a_j(t, x)| &\leq C a_p(t) \quad \forall (t, x) \in [0, T] \times \mathbb{R}, \quad 0 \leq \beta \leq j - 1, \ 3 \leq j \leq p - 1 \\
(1.7) \quad |\text{Im} D^\beta_x a_j(t, x)| &\leq \frac{C a_p(t)}{\langle x \rangle^{\beta/2 - 1}}, \forall (t, x) \in [0, T] \times \mathbb{R}, \quad 0 \leq \left\lfloor \frac{\beta}{2} \right\rfloor \leq j - 1, \ 3 \leq j \leq p - 1 \\
(1.8) \quad |\text{Im} a_2| &\leq \frac{C a_p(t)}{\langle x \rangle^{3/2 - 1}} \\
(1.9) \quad |\text{Im} a_1| + |\text{Im} D_x a_2| &\leq \frac{C a_p(t)}{\langle x \rangle^{1/2 - 1}}
\end{align*}
for some $C > 0$, where $\left\lfloor \beta/2 \right\rfloor$ denotes the integer part of $\beta/2$.

Then, the Cauchy problem (1.2) is well-posed in H^∞ (with loss of derivatives). More precisely, there exists a positive constant σ such that for all $f \in C([0, T]; H^s)$ and $g \in H^s$ there is a unique solution $u \in C([0, T]; H^{s-\sigma})$ which satisfies the following energy estimate:
\begin{equation}
(1.10) \quad \|u(t, \cdot)\|_{s-\sigma}^2 \leq C_s \left(\|g\|^2_s + \int_{0}^{t} \|f(\tau, \cdot)\|^2_s d\tau \right) \quad \forall t \in [0, T],
\end{equation}
for some $C_s > 0$.
Remark 1.2. For $p = 2, 3$ conditions (1.6) and (1.7) are empty and assumptions (1.8), (1.9) coincide with those of [KB], [CC2].

Remark 1.3. The assumption that $a_p(t)$ is non-negative can be clearly substituted by the assumption that it is non-positive.

Remark 1.4. If there exists a positive constant C such that $a_p(t) \geq C$ for every $t \in [0, T]$, then Levi-type conditions on the coefficients are not needed: we can put C instead of $Ca_p(t)$ on the right hand-side of (1.6)-(1.9).

2. Preliminary results

In order to prove Theorem 1.1 by the energy method we write

\[iP = \partial_t + ia_p(t)D_x^p + \sum_{j=0}^{p-1} ia_j(t, x) D_x^j \]

\[= \partial_t + A(t, x, D_x) \]

and compute, for a solution $u(t, x)$ of (1.2),

\[
\frac{d}{dt} \|u\|_0^2 = 2 \Re \langle \partial_t u, u \rangle = 2 \Re \langle iPu, u \rangle - 2 \Re \langle Au, u \rangle
\]

\[\leq \|f\|_0^2 + \|u\|_0^2 - 2 \Re \langle Au, u \rangle, \]

where $\|\cdot\|_0$ and $\langle \cdot, \cdot \rangle$ denote, respectively, the norm and the scalar product in $L^2(\mathbb{R})$.

We look for an estimate from below for $\Re \langle Au, u \rangle$ of the form

\[\Re \langle Au, u \rangle \geq -c\|u\|_0^2 \]

for some $c > 0$. For this purpose we want to make use of the sharp-Gårding Theorem A.1 or the Fefferman-Phong inequality (A.3). We thus need to replace A with an operator A_Λ whose symbol $\sigma(A_\Lambda)$ has non-negative real part.

To this aim we construct $A_\Lambda := (e^{\Lambda})^{-1}A e^{\Lambda}$, with $e^{A(x, D_x)}$ a pseudo-differential operator of symbol $\Lambda(x, \xi)$ such that:

- $\Lambda(x, \xi)$ is real valued;
- $e^{\Lambda} \in S^\delta$, $\delta > 0$, so that $e^{\Lambda} : H^\infty \to H^\infty$;
- e^{Λ} is invertible;
- $(e^{\Lambda})^{-1}$ has principal part $e^{-\Lambda}$;
- $\sigma(Re A_\Lambda)(t, x, \xi) \geq 0$.

Then we consider the Cauchy problem

\[
\begin{cases}
P_\Lambda v = f_\Lambda \\
v(0, x) = g_\Lambda
\end{cases}
\]

for $P_\Lambda := (e^{\Lambda})^{-1}Pe^{\Lambda}$, $f_\Lambda := (e^{\Lambda})^{-1}f$ and $g_\Lambda := (e^{\Lambda})^{-1}g$. Well-posedness of (2.2) in Sobolev spaces is clearly equivalent to that of (1.2) for $u(t, x) = e^{A(x, D_x)}v(t, x)$.

Following [CC2] and [KB] we construct the operator $\Lambda(x, D_x)$ by defining its symbol

\[
\Lambda(x, \xi) := \lambda_{p-1}(x, \xi) + \lambda_{p-2}(x, \xi) + \ldots + \lambda_1(x, \xi)
\]

with

\[
\lambda_{p-k}(x, \xi) := M_{p-k}\omega \left(\frac{\xi}{h} \right) \int_0^x \langle y \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle y \rangle}{\langle \xi \rangle h} \right) dy \langle \xi \rangle h^{-k+1}, \quad 1 \leq k \leq p - 1,
\]

where ω is a function such that $\omega(0) = 1$.
where \(\langle \xi \rangle_h := \sqrt{h^2 + \xi^2} \) for \(h \geq 1 \), \(\langle y \rangle := \langle y \rangle_1 \), the constants \(M_{p-k} > 0 \) will be chosen in order to apply Theorems A.1 or A.3, \(\omega \in C^\infty(\mathbb{R}) \) and \(\psi \in C_0^\infty(\mathbb{R}) \) satisfy:

\[
\omega(y) = \begin{cases}
0 & |y| \leq 1 \\
|y|^{p-1/y^{p-1}} & |y| \geq 2
\end{cases}
\]

\[
0 \leq \psi(y) \leq 1 \quad \forall y \in \mathbb{R}
\]

\[
\psi(y) = \begin{cases}
1 & |y| \leq \frac{1}{2} \\
0 & |y| \geq 1.
\end{cases}
\]

In the present section we give the properties of \(\Lambda \) which will be used in §3 to prove Theorem 1.1.

Lemma 2.1. There exist positive constants \(C, \delta \) and \(\delta_{\alpha,\beta} \), independent on \(h \), such that

\[
|\Lambda(x, \xi)| \leq C + \delta \log \langle \xi \rangle_h \quad (2.5)
\]

\[
|\partial_\alpha \xi^\beta_x \Lambda(x, \xi)| \leq \delta_{\alpha,\beta} \langle \xi \rangle_h^{-\alpha} \quad \forall \alpha \in \mathbb{N}, \quad \beta \in \mathbb{N} \setminus \{0\}. \quad (2.6)
\]

Proof. Let us first remark that \(\psi((y)/\langle \xi \rangle_h^{p-1}) \) is zero outside

\[
E_\psi := \{ y \in \mathbb{R} : \langle y \rangle \leq \langle \xi \rangle_h^{p-1} \}.
\]

We can thus estimate, for \(k = 1 \),

\[
|\lambda_{p-1}(x, \xi)| \leq M_{p-1} \int_{E_\psi} \frac{1}{\sqrt{1 + y^2}} dy \leq M_{p-1} \log 2 + M_{p-1} (p - 1) \log \langle \xi \rangle_h; \quad (2.7)
\]

for \(2 \leq k \leq p - 1 \),

\[
|\lambda_{p-k}(x, \xi)| \leq M_{p-k} \int_0^{\langle x \rangle} (y)^{-\frac{p-k}{p-1}} \chi_{E_\psi}(x) \langle \xi \rangle_h^{-k+1} dy \leq M_{p-k} \frac{p-1}{k-1} (x)^{\frac{k-1}{p-1}} \langle \xi \rangle_h^{-k+1} \chi_{E_\psi}(x) \quad (2.8)
\]

where \(\chi_{E_\psi} \) is the characteristic function of \(E_\psi \).

By (2.8) we get also, for \(2 \leq k \leq p - 1 \), both:

\[
|\lambda_{p-k}(x, \xi)| \leq M'_{p-k} \quad (2.9)
\]

\[
|\lambda_{p-k}(x, \xi)| \leq M'_{p-k} \langle x \rangle^{\frac{k-1}{p-1}} \langle \xi \rangle_h^{-k+1}
\]

for \(M'_{p-k} = M_{p-k} \frac{p-1}{k-1} \).

Since

\[
|\Lambda(x, \xi)| \leq |\lambda_{p-1}(x, \xi)| + \sum_{k=2}^{p-1} |\lambda_{p-k}(x, \xi)|,
\]

from (2.7) and (2.9) we get (2.5) for \(\delta = (p - 1)M_{p-1} \) and \(C = M_{p-1} \log 2 + \sum_{k=2}^{p-1} M'_{p-k} \).
In order to prove (2.6), let us first consider the case $\alpha = 0$. For $\beta \geq 1$ and $1 \leq k \leq p - 1$ (using also the Faà Di Bruno formula for the derivative of a composite function):

\[
(2.10) \quad \partial_x^\beta \Lambda_p - k(x, \xi) = M_{p-k}\omega \left(\frac{\xi}{h} \right) \partial_x^{\beta-1} \left[(\langle x \rangle)^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle x \rangle}{\langle \xi \rangle_h^{p-1}} \right) \right] (\langle x \rangle)^{-k+1}
\]

\[
= M_{p-k}\omega \left(\frac{\xi}{h} \right) \sum_{\beta' = 0}^{\beta-1} \binom{\beta - 1}{\beta'} \partial_x^{\beta'} (\langle x \rangle)^{-\frac{p-k}{p-1}} \partial_x^{\beta' - \beta} \psi \left(\frac{\langle x \rangle}{\langle \xi \rangle_h^{p-1}} \right) (\langle x \rangle)^{-k+1}
\]

\[
= M_{p-k}\omega \left(\frac{\xi}{h} \right) \partial_x^{\beta-1} (\langle x \rangle)^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle x \rangle}{\langle \xi \rangle_h^{p-1}} \right) (\langle x \rangle)^{-k+1}
\]

\[
+ M_{p-k}\omega \left(\frac{\xi}{h} \right) \sum_{\beta' = 0}^{\beta-2} \binom{\beta - 1}{\beta'} \partial_x^{\beta'} (\langle x \rangle)^{-\frac{p-k}{p-1}}
\]

\[
\cdot \sum_{r_1 + \ldots + r_q = \beta - 1 - \beta'} C_{q, \nu} (q) \left(\frac{\langle x \rangle}{\langle \xi \rangle_h^{p-1}} \right) \partial_x^{r_1} \frac{\langle x \rangle}{\langle \xi \rangle_h^{p-1}} \ldots \partial_x^{r_q} \frac{\langle x \rangle}{\langle \xi \rangle_h^{p-1}} (\langle x \rangle)^{-k+1}
\]

\[
(2.11) \quad := M_{p-k}\omega \left(\frac{\xi}{h} \right) A_{k, \beta} + M_{p-k}\omega \left(\frac{\xi}{h} \right) B_{k, \beta}
\]

with $B_{k, \beta} \equiv 0$ if $\beta = 1$.

Since $|\partial_x^r (\langle x \rangle)^{-\frac{p-k}{p-1}}| \leq c (\langle x \rangle)^{-\frac{p-k}{p-1}}$ and, on E_ψ,

\[
\left| \partial_x^{r_1} \frac{\langle x \rangle}{\langle \xi \rangle_h^{p-1}} \ldots \partial_x^{r_q} \frac{\langle x \rangle}{\langle \xi \rangle_h^{p-1}} \right| \leq c \frac{(\langle x \rangle)^{1-r_1}}{\langle \xi \rangle_h^{p-1}} \ldots \frac{(\langle x \rangle)^{1-r_q}}{\langle \xi \rangle_h^{p-1}} \leq c (\langle x \rangle)^{-(r_1 + \ldots + r_q)} = c (\langle x \rangle)^{-\beta + 1 + \beta'}
\]

for some $c > 0$, there exist positive constants $c_{k, \beta}$ and $C_{k, \beta}$ such that

\[
(2.12) |\partial_x^\beta \Lambda_p - k(x, \xi)| \leq c_{k, \beta} M_{p-k}(\langle x \rangle)^{-\frac{p-k}{p-1} - \beta + 1} (\langle \xi \rangle_h^{k+1} \chi_{E_\psi}(x) = C_{k, \beta} (\langle x \rangle)^{\frac{k+1}{p-1} - \beta} (\langle \xi \rangle_h^{-k+1} \chi_{E_\psi}(x)
\]

\[
\leq C_{k, \beta} (\langle x \rangle)^{-\beta} \leq C_{k, \beta} \quad \forall 1 \leq k \leq p - 1.
\]

Therefore

\[
|\partial_x^\beta \Lambda(x, \xi)| \leq \sum_{k=1}^{p-1} C_{k, \beta} (\langle x \rangle)^{\frac{k+1}{p-1} - \beta + 1} (\langle \xi \rangle_h^{-k+1} \chi_{E_\psi}(x)
\]

\[
= (\langle x \rangle)^{-\frac{p}{p-1} - \beta + 1} (\langle \xi \rangle_h^{k+1} \chi_{E_\psi}(x)
\]

\[
\leq C_{\beta} (\langle x \rangle)^{-\frac{p}{p-1} - \beta + 1} (\langle \xi \rangle_h^{k+1} \chi_{E_\psi}(x)
\]

\[
(2.13) \quad = C_{\beta} (\langle x \rangle)^{-\beta}
\]

for some $C_{\beta} > 0$.

For the case \(\alpha \geq 1 \) and \(1 \leq k \leq p - 1 \), let us compute (for \(\beta = 0 \)):

\[
\partial_{\xi}^{\alpha} \lambda_{p-k}(x, \xi) = M_{p-k} \partial_{\xi}^{\alpha} \left[\omega \left(\frac{\xi}{h} \right) \int_{0}^{x} \langle y \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle y \rangle}{\langle \xi \rangle_{h}^{-1}} \right) dy \langle \xi \rangle_{h}^{-k+1} \right]
\]

\[
= M_{p-k} \left[\partial_{\xi}^{\alpha} \omega \left(\frac{\xi}{h} \right) \right] \int_{0}^{x} \langle y \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle y \rangle}{\langle \xi \rangle_{h}^{-1}} \right) dy \langle \xi \rangle_{h}^{-k+1}
\]

\[
+ M_{p-k} \sum_{\alpha' = 1}^{\alpha} \left(\frac{\alpha'}{\alpha} \right) \partial_{\xi}^{\alpha-\alpha'} \omega \left(\frac{\xi}{h} \right) \partial_{\xi}^{\alpha'} \left[\int_{0}^{x} \langle y \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle y \rangle}{\langle \xi \rangle_{h}^{-1}} \right) dy \langle \xi \rangle_{h}^{-k+1} \right]
\]

(2.14) \[= M_{p-k} (D_{k,\alpha} + E_{k,\alpha}). \]

Note that \(\omega(\xi/h) \) is constant for \(|\xi| \geq 2h \), and hence

\[
\partial_{\xi}^{\alpha} \omega \left(\frac{\xi}{h} \right) = \frac{1}{h^{\gamma}} \omega^{(\gamma)} \left(\frac{\xi}{h} \right) \chi_{\{ |\xi| < 2h \}} \quad \forall \gamma \geq 1,
\]

where \(\chi_{\{ |\xi| < 2h \}} \) is the characteristic function of the set \(\{ \xi \in \mathbb{R} : |\xi| < 2h \} \). Therefore, on the support of \(\omega^{(\gamma)} \):

(2.15) \[
\left| \partial_{\xi}^{\alpha} \omega \left(\frac{\xi}{h} \right) \right| \leq C_{\gamma} \langle \xi \rangle_{h}^{-\gamma} \quad \forall \gamma \geq 0
\]

for some \(C_{\gamma} > 0 \).

From (2.7) and (2.8) it follows that

(2.16) \[|D_{1,\alpha}| \leq C_{1,\alpha} \langle \xi \rangle_{h}^{-\alpha} (1 + \log \langle \xi \rangle_{h}) \chi_{\{ |\xi| < 2h \}} \]

(2.17) \[|D_{k,\alpha}| \leq C_{k,\alpha} \langle x \rangle^{\frac{k-1}{p-1}} \langle \xi \rangle_{h}^{-\alpha-k+1} \chi_{E_{\phi}}(x) \quad \forall 2 \leq k \leq p - 1
\]

for some \(C_{1,\alpha}, C_{2,\alpha}, \ldots, C_{p-1,\alpha} \geq 0 \).

In order to estimate \(E_{k,\alpha} \) we consider, for \(\alpha' \geq 1 \):

(2.18) \[
\partial_{\xi}^{\alpha'} \left[\int_{0}^{x} \langle y \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle y \rangle}{\langle \xi \rangle_{h}^{-1}} \right) dy \langle \xi \rangle_{h}^{-k+1} \right] = \int_{0}^{x} \langle y \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle y \rangle}{\langle \xi \rangle_{h}^{-1}} \right) dy \partial_{\xi}^{\alpha'} \langle \xi \rangle_{h}^{-k+1}
\]

\[
+ \sum_{\alpha', \alpha'' = 1}^{\alpha'} \left(\frac{\alpha'}{\alpha''} \right) \int_{0}^{x} \langle y \rangle^{-\frac{p-k}{p-1}} \partial_{\xi}^{\alpha''} \psi \left(\frac{\langle y \rangle}{\langle \xi \rangle_{h}^{-1}} \right) dy \partial_{\xi}^{\alpha'-\alpha''} \langle \xi \rangle_{h}^{-k+1}
\]

\[
= F_{k,\alpha'} + G_{k,\alpha'}
\]

Note that \(F_{1,\alpha'} = 0 \) since \(\alpha' \geq 1 \). Moreover, from (2.8):

(2.19) \[|F_{k,\alpha'}| \leq C_{k,\alpha'} \langle x \rangle^{\frac{k-1}{p-1}} \langle \xi \rangle_{h}^{-\alpha'-k+1} \chi_{E_{\phi}}(x) \quad \forall 2 \leq k \leq p - 1
\]

for some \(C_{2,\alpha'}, \ldots, C_{p-1,\alpha'} > 0 \).
Since $\alpha'' \geq 1$ in $G_{k,\alpha'}$, we have, for $1 \leq k \leq p - 1$:

\begin{equation}
|G_{k,\alpha'}| \leq \sum_{\alpha''=1}^{\alpha'} \left(\frac{\alpha'}{\alpha''} \right) \left| \int_0^\infty \langle y \rangle^{-\frac{p-k}{p-1}} \sum_{\substack{r_1+\ldots+r_q=\alpha'' \\ r_i \in \mathbb{N} \setminus \{0\}}} C_{q,r} \psi(q) \left(\frac{\langle y \rangle}{\langle \xi \rangle_{h}^{p-1}} \right) \partial^{r_i} \frac{\langle y \rangle}{\langle \xi \rangle_{h}^{p-1}} \ldots \partial^{r_q} \frac{\langle y \rangle}{\langle \xi \rangle_{h}^{p-1}} dy \right| \cdot \\
\cdot |\partial^{\alpha'-\alpha''}(\langle \xi \rangle_{h}^{-k+1})| \\
\leq \sum_{\alpha''=1}^{\alpha'} \left(\frac{\alpha'}{\alpha''} \right) \left| \int_0^\infty \langle y \rangle^{-\frac{p-k}{p-1}} \sum_{\substack{r_1+\ldots+r_q=\alpha'' \\ r_i \in \mathbb{N} \setminus \{0\}}} C_{q,r} \psi(q) \cdot \chi_{\text{supp } \psi}(y) \right| \cdot \\
\cdot \sum_{\substack{r_1+\ldots+r_q=\alpha'' \\ r_i \in \mathbb{N} \setminus \{0\}}} C_{q,r} \sup_{\mathbb{R}} \psi(q) \cdot \chi_{\text{supp } \psi}(x) \langle \xi \rangle_{h}^{-(r_1+\ldots+r_q)} \langle \xi \rangle_{h}^{-k+1-\alpha'+\alpha''} \\
\leq C_{\alpha'} \langle x \rangle^{\frac{k-1}{p-1}} \langle \xi \rangle_{h}^{-k+1-\alpha'} \chi_{\text{supp } \psi}(x) \\
\tag{2.20}
\end{equation}

for some $C_{\alpha'} > 0$, where $\chi_{\text{supp } \psi} \subseteq \{ x \in \mathbb{R} : \frac{1}{2} \langle \xi \rangle_{h}^{p-1} \leq \langle x \rangle \leq \langle \xi \rangle_{h}^{p-1} \}$ is the characteristic function of the support of $\psi'(\langle x \rangle/\langle \xi \rangle_{h}^{p-1})$.

From (2.14), (2.15), (2.18), (2.19) and (2.20) it follows that

\begin{equation}
|E_{k,\alpha}| \leq \sum_{\alpha''=1}^{\alpha} C_{\alpha,\alpha'} \langle \xi \rangle_{h}^{-\alpha+\alpha'} \langle x \rangle^{\frac{k-1}{p-1}} \langle \xi \rangle_{h}^{-\alpha'-k+1} \chi_{E_0}(x) = C_{\alpha}' \langle x \rangle^{\frac{k-1}{p-1}} \langle \xi \rangle_{h}^{-\alpha-k+1} \chi_{E_0}(x) \\
\tag{2.21}
\end{equation}

for some $C_{\alpha,\alpha'}, C_{\alpha}' > 0$.

Therefore, (2.14), (2.16), (2.17) and (2.21) give, for $\alpha \geq 1$:

\begin{align}
|\partial^{\alpha} \lambda_{p-1}(x, \xi)| & \leq C_{\alpha} M_{p-1} \langle \xi \rangle_{h}^{-\alpha} (1 + \log \langle \xi \rangle_{h} \chi(|\xi| < 2h)) \\
|\partial^{\alpha} \lambda_{p-k}(x, \xi)| & \leq C_{\alpha} M_{p-k} \langle x \rangle^{\frac{k-1}{p-1}} \langle \xi \rangle_{h}^{-\alpha-k+1} \chi_{E_0}(x) \\
& \leq C_{\alpha} M_{p-k} \langle \xi \rangle_{h}^{-\alpha} \quad \forall 2 \leq k \leq p - 1 \\
\tag{2.22}
\tag{2.23}
\end{align}

for some $C_{\alpha} > 0$.

Let us finally assume $\alpha, \beta \geq 1$ and compute, from (2.10) and (2.11):

$$
\partial_\xi^\alpha \partial_\xi^\beta \lambda_{p-k}(x, \xi) = M_{p-k} \partial_\xi^\alpha \omega \left(\frac{\xi}{\hbar} \right) \partial_\xi^{\alpha-1} \left[\langle x \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle x \rangle}{\langle \xi \rangle^{p-1}} \right) \right] \langle \xi \rangle^{h^{-k+1}}
+ M_{p-k} \sum_{\alpha' = 1}^\alpha \left(\frac{\alpha}{\alpha'} \right) \partial_\xi^{\alpha-\alpha'} \omega \left(\frac{\xi}{\hbar} \right) \partial_\xi^{\alpha'-1} \partial_\xi^{\alpha'} \left[\langle x \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle x \rangle}{\langle \xi \rangle^{p-1}} \right) \right] \langle \xi \rangle^{h^{-k+1}}
= M_{p-k} \partial_\xi^\alpha \omega \left(\frac{\xi}{\hbar} \right) (A_{k, \beta} + B_{k, \beta})
+ M_{p-k} \sum_{\alpha' = 1}^\alpha \left(\frac{\alpha}{\alpha'} \right) \partial_\xi^{\alpha-\alpha'} \omega \left(\frac{\xi}{\hbar} \right) \partial_\xi^{\alpha'-1} \left[\langle x \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle x \rangle}{\langle \xi \rangle^{p-1}} \right) \right] \langle \xi \rangle^{h^{-k+1}}
+ \langle x \rangle^{-\frac{p-k}{p-1}} \sum_{\alpha'' = 0}^{\alpha'} \left(\frac{\alpha'}{\alpha''} \right) \sum_{r_1+\ldots+r_q = \alpha''} C_{q,r} \psi(q) \left(\frac{\langle x \rangle}{\langle \xi \rangle^{p-1}} \right) \cdot \partial_\xi^{\alpha''} \langle \xi \rangle^{h^{-k+1}}
= M_{p-k} \partial_\xi^\alpha \omega \left(\frac{\xi}{\hbar} \right) (A_{k, \beta} + B_{k, \beta})
+ M_{p-k} \sum_{\alpha' = 1}^\alpha \left(\frac{\alpha}{\alpha'} \right) \partial_\xi^{\alpha-\alpha'} \omega \left(\frac{\xi}{\hbar} \right) \partial_\xi^{\alpha'-1} \langle x \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle x \rangle}{\langle \xi \rangle^{p-1}} \right) \partial_\xi^{\alpha'} \langle \xi \rangle^{h^{-k+1}}
+ M_{p-k} \sum_{\alpha' = 1}^\alpha \left(\frac{\alpha}{\alpha'} \right) \partial_\xi^{\alpha-\alpha'} \omega \left(\frac{\xi}{\hbar} \right) \sum_{\beta' = 1}^{\beta-1} \left(\beta - 1 \right) \partial^{\beta-1-\beta'} \langle x \rangle^{-\frac{p-k}{p-1}} \cdot \partial_\xi^{\alpha'} \langle \xi \rangle^{h^{-k+1}}
+ M_{p-k} \sum_{\alpha' = 1}^\alpha \left(\frac{\alpha}{\alpha'} \right) \partial_\xi^{\alpha-\alpha'} \omega \left(\frac{\xi}{\hbar} \right) \sum_{\beta' = 0}^{\beta-1} \left(\beta - 1 \right) \beta' \partial^{\beta-1-\beta'} \langle x \rangle^{-\frac{p-k}{p-1}} \cdot \partial_\xi^{\alpha'} \langle \xi \rangle^{h^{-k+1}}
+ M_{p-k} \sum_{\alpha' = 1}^\alpha \left(\frac{\alpha}{\alpha'} \right) \partial_\xi^{\alpha-\alpha'} \omega \left(\frac{\xi}{\hbar} \right) \partial_\xi^{\alpha''} \langle x \rangle^{-\frac{p-k}{p-1}} \psi(q) \left(\frac{\langle x \rangle}{\langle \xi \rangle^{p-1}} \right) \cdot \partial_\xi^{\alpha'} \langle \xi \rangle^{h^{-k+1}}
$$

(2.24) \quad = A_{k, \alpha, \beta} + B_{k, \alpha, \beta} + C_{k, \alpha, \beta} + D_{k, \alpha, \beta}$.
Note that, for \(\beta' \geq 1 \),
\[
\left| \partial_x^{\beta'} \psi \left(\frac{(x)}{(\xi)_h^{p-1}} \right) \right| \leq \sum_{r_1 + \ldots + r_q = \beta'} \sum_{r_c \in \mathbb{N}\{0\}} C_{q,r} \left| \psi(q) \left(\frac{(x)}{(\xi)_h^{p-1}} \right) \partial_x^{r_1} x^{1-r_1} \partial_x^{r_q} x^{1-r_q} \right| \leq \sum_{r_1 + \ldots + r_q = \beta'} C_{q,r} \sup_\mathbb{R} \left| \psi(q) \chi_{\text{supp } \psi} \right| (x)^{1-r_1} \partial_x^{r_q} x^{1-r_q} \leq c(x)^{-\beta'}
\]
for some \(c > 0 \). Therefore, from (2.11), (2.12) and (2.15) we have, for \(1 \leq k \leq p-1 \):
\[
|A_{k,\alpha,\beta}| + |B_{k,\alpha,\beta}| \leq C_{\alpha,\beta} \langle x \rangle^{\frac{1}{p-1}-\beta} \langle \xi \rangle^{-\alpha-k+1} \chi_{E_\psi}(x)
\]
\[
|C_{k,\alpha,\beta}| + |D_{k,\alpha,\beta}| \leq C_{\alpha,\beta} \langle x \rangle^{\frac{1}{p-1}-\beta} \langle \xi \rangle^{-\alpha-k+1} \chi_{\text{supp } \psi}(x)
\]
for some \(C_{\alpha,\beta} > 0 \).

We have thus proved the existence of some \(C_{\alpha,\beta} > 0 \) such that
\[
(2.25) \quad |\partial_x^\alpha \partial_\xi^\beta \Lambda_{p-k}(x, \xi)| \leq C_{\alpha,\beta} \langle x \rangle^{\frac{1}{p-1}-\beta} \langle \xi \rangle^{-\alpha-k+1} \chi_{E_\psi}(x)
\]
for \(\alpha \geq 1, \beta \geq 1, 1 \leq k \leq p-1 \).

Estimates (2.25) and (2.13) finally give (2.6), since \(\langle x \rangle \leq \langle \xi \rangle^{p-1} \) on \(E_\psi \). \(\square \)

Remark 2.2. The estimate (2.25) is more precise than the estimate (2.6) and will be useful in the sequel.

From Lemma 2.1 we get, following [CC2], Proposition 2.1:

Lemma 2.3. Let \(\Lambda(x, \xi) \) satisfy (2.5) and (2.6). Then the operator \(e^{\Lambda(x,D_x)} \), with symbol \(e^{\Lambda(x,\xi)} \in S^b \), is invertible and
\[
(2.26) \quad (e^\Lambda)^{-1} = e^{-\Lambda}(I + R)
\]
where \(I \) is the identity operator and \(R \) is of the form \(R = \sum_{n=1}^{+\infty} \Gamma_n \) with principal symbol \(r_{-1}(x, \xi) = \partial_\xi \Lambda(x, \xi) D_x \Lambda(x, \xi) \in S^{-1} \).

Proof. Let us compute the symbol of \(e^{\Lambda(x,D_x)} e^{-\Lambda(x,D_x)} \):
\[
\sigma \left(e^{\Lambda(x,D_x)} e^{-\Lambda(x,D_x)} \right) = \sum_{m \geq 0} \frac{1}{m!} \partial_\xi^m e^{\Lambda(x,\xi)} D_x^m e^{-\Lambda(x,\xi)}
\]
\[
= 1 - \partial_\xi \Lambda(x, \xi) D_x \Lambda(x, \xi) + \sum_{m \geq 2} \frac{1}{m!} \partial_\xi^m e^{\Lambda(x,\xi)} D_x^m e^{-\Lambda(x,\xi)}.
\]
By (2.6),
\[
r_{-1}(x, \xi) := \partial_\xi \Lambda(x, \xi) D_x \Lambda(x, \xi) \in S^{-1}
\]
and
\[
\sum_{m \geq 2} \frac{1}{m!} \partial_\xi^m e^{\Lambda(x,\xi)} D_x^m e^{-\Lambda(x,\xi)} \in S^{-2}.
\]
Setting
\[
(2.27) \quad r(x, \xi) := \partial_\xi \Lambda(x, \xi) D_x \Lambda(x, \xi) - \sum_{m \geq 2} \frac{1}{m!} \partial_\xi^m e^{\Lambda(x,\xi)} D_x^m e^{-\Lambda(x,\xi)},
\]
we get (2.26) since (2.6), (2.22) and (2.23) imply, for some $C_{\alpha,\beta} > 0$:

$$\left| \partial_{\xi}^{\alpha} D_{x}^{\beta} r(x, \xi) \right| \leq C_{\alpha,\beta}(1 + \log h)(\xi)_h^{1-\alpha} = C_{\alpha,\beta}(1 + \log h)(h^2 + \xi^2)^{-1/2}(\xi)_h^{-\alpha}$$

(2.28)

$$\leq C_{\alpha,\beta}(1 + \log h)h^{-1}(\xi)_h^{-\alpha} \quad \forall \alpha, \beta \geq 0.$$

This makes, for h large enough, $I - r$ invertible by Neumann series with inverse operator $\sum_{n=0}^{+\infty} r^n$.

Similar arguments hold also for $e^{-A}e^{A}$, so that $e^{-A}\sum_{n=0}^{+\infty} r^n$ is a right inverse and a left inverse operator for e^{A}.

Remark 2.4. Once $h \geq 1$ is fixed large enough to get (2.26), the estimate (2.22) reduces to

$$\left| \partial_{\xi}^{\alpha} \lambda_{p-1}(x, \xi) \right| \leq C_{\alpha}(\xi)_h^{-\alpha}$$

for some $C_{\alpha} > 0$ depending also on the fixed $h \geq 1$.

Moreover, for $|\xi| > 2h$, from (2.14)-(2.20) we can also write, for some $C_{\alpha} > 0$,

(2.29) $$\left| \partial_{\xi}^{\alpha} \lambda_{p-1}(x, \xi) \right| \leq C_{\alpha}(\xi)_h^{-\alpha} \chi_{\text{supp } \psi}(x)$$

and hence, putting together (2.29) and (2.23):

(2.30) $$\left| \partial_{\xi}^{\alpha} \lambda_{p-k}(x, \xi) \right| \leq C_{\alpha} M_{p-k}(x) \frac{k^{k-1}}{(k-1)!} (\xi)_h^{-\alpha-k+1} \chi_{E_p}(x) \quad \forall 1 \leq k \leq p - 1.$$

Lemma 2.5. Let $\Lambda(x, \xi)$ satisfy (2.6) and $h \geq 1$ be fixed large enough to get (2.26). Then

(2.31) $$\left| \partial_{\xi}^{\alpha} e^{\pm \Lambda(x, \xi)} \right| \leq C_{\alpha}(\xi)_h^{\alpha} e^{\pm \Lambda(x, \xi)} \quad \forall \alpha \in \mathbb{N}$$

(2.32) $$\left| D_{x}^{\beta} e^{\pm \Lambda(x, \xi)} \right| \leq C_{\beta}(x)^{-\beta} e^{\pm \Lambda(x, \xi)} \quad \forall \beta \in \mathbb{N}.$$

Proof. Let us first remark that (2.31) and (2.32) are trivial for $\alpha = 0$ and $\beta = 0$.

From (2.30) we have, for $\alpha \geq 1$:

$$\left| \partial_{\xi}^{\alpha} e^{\pm \Lambda(x, \xi)} \right| = \left| \sum_{r_1 + \ldots + r_q = \alpha} C_{q,r}(\partial_{\xi}^{r_1} \Lambda) \ldots (\partial_{\xi}^{r_q} \Lambda) e^{\pm \Lambda(x, \xi)} \right|$$

$$\leq \sum_{r_1 + \ldots + r_q = \alpha} C'_{q,r}(\xi)_h^{-r_1 - \ldots - r_q} e^{\pm \Lambda(x, \xi)}$$

$$= C_{\alpha}(\xi)_h^{-\alpha} e^{\pm \Lambda(x, \xi)}$$

for some constants $C_{q,r}, C'_{q,r}, C_{\alpha} > 0$.

Analogously, from (2.13) for $\beta \geq 1$ we get:

$$\left| D_{x}^{\beta} e^{\pm \Lambda(x, \xi)} \right| = \left| \sum_{r_1 + \ldots + r_q = \beta} C_{q,r}(\partial_{x}^{r_1} \Lambda) \ldots (\partial_{x}^{r_q} \Lambda) e^{\pm \Lambda(x, \xi)} \right|$$

$$\leq C_{\beta}(x)^{-\beta} e^{\pm \Lambda(x, \xi)}$$

for some constant $C_{\beta} > 0$.

From Lemma 2.3 we have also the following:

Lemma 2.6. Let $A(x, \xi) = ia_{p}(t)\xi^{p} + \sum_{j=0}^{p-1} ia_{j}(t, x)\xi^{j}$, $\Lambda(x, \xi)$ satisfying (2.6), and $r(x, \xi)$ as in (2.27).

Then the operator

$$A_{\Lambda}(t, x, D_{x}) := (e^{\Lambda(x,D_{x})})^{-1} A(t, x, D_{x}) e^{\Lambda(x,D_{x})}$$
can be written as
\[A_\Lambda(t, x, D_x) = e^{-\Lambda(t, D_x)}A(t, x, D_x)e^{\Lambda(t, D_x)} \]
\[+ \sum_{m=0}^{p-2} \frac{1}{m!} \sum_{n=1}^{p-1-m} e^{-\Lambda(t, D_x)} A_{n,m}(t, x, D_x) e^{\Lambda(t, D_x)} + A_0(t, x, D_x), \]
(2.33)
where \(A_0(t, x, D_x) \) has symbol \(A_0(t, x, \xi) \in S^0 \) and
\[\sigma(A_{n,m}(t, x, D_x)) = \partial^{m,n}(x, \xi) D_x^{m} A(t, x, \xi) \in S^{p-m-\nu}. \]

Proof. Let \(R(x, \xi) = \sum_{n=1}^{+\infty} r^n(x, \xi) \) as in Lemma 2.3, so that, from (2.26):
\[(e^\Lambda)^{-1} Ae^\Lambda = e^{-\Lambda} Ae^\Lambda + e^{-\Lambda} RA e^\Lambda. \]

Note that
\[\sigma(RA) = \sum_{m \geq 0} \frac{1}{m!} (\partial^{m,n}(x) D_x^m A) \]
\[= \sum_{m \geq 0} \frac{1}{m!} \partial^{m,n}_\xi \left(\sum_{n=1}^{+\infty} r^n \right) (D_x^m A) \]
\[= \sum_{m \geq 0} \frac{1}{m!} \sum_{n=1}^{+\infty} (\partial^{m,n}_\xi r) (D_x^m A) \]
since the series \(\sum_{n=1}^{+\infty} r^n(x, \xi) \) is normally convergent because of (2.28).

Moreover, for \(m \geq 1 \):
\[\partial^{m,n}_\xi r^n(x, \xi) = \sum_{s_1 + \ldots + s_q = m, \ s_i \in \mathbb{N} \setminus \{0\}} C_{q,s} r^{n-q} \partial^{s_1}_\xi r \ldots \partial^{s_q}_\xi r, \]
for some \(C_{q,s} > 0 \). This means that \(\partial^{m,n}_\xi r \) is a symbol of order \(-(n-q) + (-1-s_1) + \ldots + (-1-s_q) = -n + q - q - (s_1 + \ldots + s_q) = -n - m \) for all \(m \geq 1 \) (and also for \(m = 0 \)).

Since \(D_x^m A \in S^p \) (in fact, \(D_x^m A \in S^{p-1} \) if \(m \geq 1 \) since \(a_p = a_p(t) \)), it follows that
\((\partial^{m,n}_\xi r) (D_x^m A) \in S^0 \) if \(p - n - m \leq 0 \), i.e. \(n + m \geq p \).

We can thus restrict to \(n + m \leq p - 1 \), i.e. \(n \leq p - 1 - m \) and \(m \leq p - 1 - n \leq p - 2 \), and write
\[\sigma(RA) = \sum_{m=0}^{p-2} \frac{1}{m!} \sum_{n=1}^{p-1-m} (\partial^{m,n}_\xi r) (D_x^m A) + R_0 \]
with \(R_0 \in S^0 \).

There exist then operators \(A_{n,m}(t, x, D_x) \) of order \(p - n - m \) and \(A_0(t, x, D_x) \) of order 0 such that
\[R(x, D_x) A(t, x, D_x) = \sum_{m=0}^{p-2} \frac{1}{m!} \sum_{n=1}^{p-1-m} A_{n,m}(t, x, D_x) + A_0(t, x, D_x) \]
with \(\sigma(A_{n,m}(t, x, D_x)) = \partial^{m,n}(x, \xi) D_x^m A(t, x, \xi) \).

Substituting in (2.35) we finally get (2.33). □

We shall need in the sequel also the following:
Lemma 2.7. If Λ is defined by (2.3) and (2.4), then, for $m \geq 1$,

$$e^{-\Lambda}D_x^me^\Lambda = \sum_{s=0}^{p-2} f_{-s}(\lambda_{p-1}, \ldots, \lambda_{p-s-1}) + f_{-p+1}(\lambda_{p-1}, \ldots, \lambda_1)$$

for some $f_{-p+1} \in S^{-p+1}$ depending on $\lambda_{p-1}, \ldots, \lambda_1$ and $f_{-s} \in S^{-s}$ depending only on $\lambda_{p-1}, \ldots, \lambda_{p-s-1}$, and not on $\lambda_{p-s}, \ldots, \lambda_1$, such that

$$|\partial^2_x \partial^\beta f_{-s}| \leq C_{\alpha,\beta,s} \frac{(\xi)^{s-\alpha}}{\langle x \rangle^{\frac{s}{p-1}+\beta}} \quad \forall \alpha, \beta \geq 0,$$

for some $C_{\alpha,\beta,s} > 0$.

Proof. For $m \geq 1$, by the Faà Di Bruno formula:

$$e^{-\Lambda}D_x^me^\Lambda = \sum_{r_1 + \ldots + r_q = m \atop r_i \in \mathbb{N}\setminus\{0\}} C_{q,r}(\partial^{r_1}x \lambda_{p-1} + \ldots + \partial^{r_q}x \lambda_1) \cdot (\partial^{q_1}x \lambda_{p-s_1}) \ldots (\partial^{q_s}x \lambda_{p-s_q}).$$

From (2.12) we have, for some $c > 0$:

$$|(\partial^{r_1}x \lambda_{p-s_1}) \ldots (\partial^{q_s}x \lambda_{p-s_q})| \leq c \langle x \rangle^{-\frac{p}{p-1}r_1+1} \langle \xi \rangle^{1-s_1} \ldots \langle x \rangle^{-\frac{p}{p-1}q_2+1} \langle \xi \rangle^{1-s_q} = c \langle x \rangle^{-\frac{p}{p-1}q_1+\ldots+q_s} = c \langle x \rangle^{-m+q} \langle \xi \rangle^{q-(s_1+\ldots+s_q)}.$$

(2.38)

Note that $0 \leq s := (s_1 + \ldots + s_q) - q \leq q(p-1) - q = qp - q(p-1) = q > 0$, so that $(\partial^{r_1}x \lambda_{p-s_1}) \ldots (\partial^{q_s}x \lambda_{p-s_q}) \in S^{-s}$ and we can write

$$e^{-\Lambda}D_x^me^\Lambda = \sum_{s=0}^{m(p-2)} f_{-s}(x, \xi)$$

for some $f_{-s} \in S^{-s}$. Since

$$s_1 + \ldots + s_q = q + s \quad \Rightarrow \quad 1 \leq s_j \leq s + 1$$

it follows that f_{-s} depends only on $\lambda_{p-1}, \ldots, \lambda_{p-s-1}$ for $0 \leq s \leq p-2$, while it depends on all $\lambda_{p-1}, \ldots, \lambda_1$ for $p-1 \leq s \leq m(p-2)$. Denoting by

$$f_{-p+1}(\lambda_{p-1}, \ldots, \lambda_1) := \sum_{s=p-1}^{m(p-2)} f_{-s} \in S^{-p+1},$$

we obtain (2.36).

Moreover (2.38) implies (2.37) for $\alpha, \beta = 0$ since, for $s_1 + \ldots + s_q = q + s$,

$$\langle x \rangle^{-\frac{pq-(s_1+\ldots+s_q)}{p-1}} = \langle x \rangle^{-\frac{pq-q-s}{p-1}} \leq \langle x \rangle^{-\frac{m(p-1)-s}{p-1}} \leq \langle x \rangle^{-\frac{p+1-s}{p-1}}.$$

Analogously, looking at the construction of f_{-s}, from (2.25) and (2.30) it follows that

$$|\partial^\alpha_x \partial^\beta x f_{-s}| \leq C_{\alpha,\beta,s} \frac{(\xi)^{s-\alpha}}{\langle x \rangle^{\frac{s}{p-1}+\beta}}$$

for some $C_{\alpha,\beta,s} > 0$. The thesis is thus proved. \[\square\]
3. Proof of the Main Theorem 1.1

Let

\[\Lambda(x, D_x) = \lambda_{p-1}(x, D_x) + \ldots + \lambda_1(x, D_x) \]

where each \(\lambda_{p-k}(x, D_x) \) has symbol \(\lambda_{p-k}(x, \xi) \) defined as in (2.4). Fix \(h \geq 1 \) large enough so that the Neumann series \(R = \sum_{n=1}^{+\infty} r^n \) in (2.26) converges. Set then

\[A(t, x, D_x) = \sum_{j=0}^{p} i a_j(t, x) D_x^j \]

with \(a_p(t, x) = a_p(t) \).

Our goal is to prove that, for \(A_\Lambda = (e^{\Lambda})^{-1} A e^\Lambda \),

\[\text{Re}(A_{\Lambda}v, v) \geq -c\|v\|_0^2 \quad \forall v(t, \cdot) \in H^\infty \]

for some \(c > 0 \).

The proof is divided into the following steps:

Step 1. We compute the symbol of the operator \(e^{-\Lambda} A e^\Lambda \) and show that its terms of order \(p - k \), \(1 \leq k \leq p - 1 \), denoted by \((e^{-\Lambda} A e^\Lambda)|_{\text{ord}(p-k)} \), have the “right decay at the right level”, in the sense that they satisfy

\[\left| \text{Re}(e^{-\Lambda} A e^\Lambda)|_{\text{ord}(p-k)}(t, x, \xi) \right| \leq C(M_{p-1}, \ldots, M_{p-k}) a_p(t) |x|^{-\frac{p-k}{p-1}} |\xi|^{p-k} \]

for a positive constant \(C(M_{p-1}, \ldots, M_{p-k}) \) depending only on \(M_{p-1}, \ldots, M_{p-k} \) and not on \(M_{p-k-1}, \ldots, M_1 \). This will be very important in the following in the application of the sharp-Gårding Theorem, since we shall choose \(M_{p-1}, \ldots, M_1 \) step by step, and at each step (say “step \(p - k \)”) we need something which depends only on the already chosen \(M_{p-1}, \ldots, M_{p-k+1} \) and on the new \(M_{p-k} \) that we need to choose, and not on the constants \(M_{p-k-1}, \ldots, M_1 \) which will be chosen in the next steps.

Step 2. In Steps 2,3,4 we choose, recursively, positive constants \(M_{p-1}, \ldots, M_1 \) in such a way that

\[\text{Re} (e^{-\Lambda} A e^\Lambda)|_{\text{ord}(p-k)} + \tilde{C} \geq 0 \]

for some \(\tilde{C} > 0 \).

Here we choose \(M_{p-1} > 0 \) such that (3.2) holds for \(k = 1 \) and apply the sharp-Gårding Theorem A.1 to \((e^{-\Lambda} A e^\Lambda)|_{\text{ord}(p-1)} + \tilde{C} \) to get

\[\sigma(e^{-\Lambda} A e^\Lambda) = i a_p \xi^p + Q_{p-1} + \sum_{k=2}^{p-1} (e^{-\Lambda} A e^\Lambda)|_{\text{ord}(p-k)} + R_{p-1} + A_0, \]

where \(A_0 \in S^0 \) and \(R_{p-1} \) is a remainder (of order \(p - 2 \)) coming from the application of the sharp-Gårding Theorem A.1.

Step 3. To iterate this process, applying the sharp-Gårding Theorem A.1 to terms of order \(p - 2 \), \(p - 3 \), and so on, up to order 3, we need to investigate the action of the sharp-Gårding Theorem to each term of the form

\[(e^{-\Lambda} A e^\Lambda)|_{\text{ord}(p-k)} + S_{p-k}, \]

where \(S_{p-k} \) denotes terms of order \(p - k \) coming from remainders of previous applications of the sharp-Gårding Theorem A.1, for \(p - k \geq 3 \).
We show at this step that remainders are sums of terms with “the right decay at the right level”, in the sense of (3.1). Then we apply the sharp-Gårding Theorem A.1 to terms of order \(p - k \), up to order \(p - k = 3 \).

Step 4. In this step we apply the Fefferman-Phong inequality to terms of order \(p - k = 2 \) and the sharp-Gårding inequality (A.2) to terms of order \(p - k = 1 \), finally obtaining that

\[
\sigma(e^{-\Lambda}Ae^{\Lambda}) = i\alpha_p \xi^p + \sum_{s=1}^{p} Q_{p-s}
\]

with

\[
\begin{align*}
\text{Re}(Q_{p-s}v, v) &\geq 0 \quad \forall v(t, \cdot) \in H^{p-s}, \quad s = 1, \ldots, p - 3 \\
\text{Re}(Q_{p-s}v, v) &\geq -c\|v\|_0^2 \quad \forall v(t, \cdot) \in H^{p-s}, \quad s = p - 2, p - 1 \\
Q_0 &\in S^0.
\end{align*}
\]

Step 5. We finally look at the full operator \(A_\Lambda \) in (2.33) and prove that \(e^{-\Lambda}A^{n,m}e^{\Lambda} \) satisfies the same estimates (3.1) as \(e^{-\Lambda}Ae^{\Lambda} \). Thus, the results of Step 4 hold for the full operator \((e^{\Lambda})^{-1}Ae^{\Lambda}\) and not only for \(e^{-\Lambda}Ae^{\Lambda} \), i.e. there exists a constant \(c > 0 \) such that

\[
\text{Re}(A_\Lambda v, v) \geq -c\|v\|_0^2 \quad \forall v(t, \cdot) \in H^\infty.
\]

From this, the thesis follows by standard energy methods.

We now proceed to the proof of the above mentioned steps.

Step 1. We compute first

\[
\sigma(A(t, x, D_x)e^{\Lambda(x,D_x)}) = \sum_{m \geq 0} \frac{1}{m!} \xi^m \left(\sum_{j=0}^{p} i\alpha_j(t, x)\xi^j \right) D_x^m e^{\Lambda(x, \xi)}
\]

\[
= \sum_{m=0}^{p} \sum_{j=0}^{m} \left(\frac{j}{m} \right) i\alpha_j(t, x)\xi^j D_x^m e^{\Lambda(x, \xi)}.
\]

Then, for some \(A_0 \in S^0 \) we have:

\[
\begin{align*}
\sigma(e^{-\Lambda}Ae^{\Lambda}) &= \sum_{\alpha \geq 0} \frac{1}{\alpha!} \xi^\alpha D_x^\alpha \left(\sum_{m=0}^{p} \sum_{j=0}^{m} \left(\frac{j}{m} \right) i\alpha_j\xi^j D_x^m e^{\Lambda} \right) \\
&= \sum_{\alpha \geq 0} \sum_{m=0}^{p} \sum_{j=0}^{m} \left(\frac{j}{m} \right) \left(\frac{\alpha}{\beta} \right) iD_x^\beta a_j(D_x^m + \alpha - \beta) e^{\Lambda} \xi^{j-m} \\
&= \sum_{m=0}^{p-1} \sum_{j=m+1}^{p} \sum_{\alpha \geq 0} \left(\frac{j}{m} \right) \left(\frac{\alpha}{\beta} \right) iD_x^\beta a_j(D_x^m + \alpha - \beta) e^{\Lambda} \xi^{j-m} + A_0 \\
&= \sum_{m=0}^{p-1} \sum_{j=m+1}^{p} \left(\frac{j}{m} \right) (i\alpha_j)(D_x^m e^{\Lambda}) \xi^{j-m} \\
&\quad + \sum_{m=0}^{p-2} \sum_{j=m+2}^{p} \sum_{\alpha \geq 0} \left(\frac{j}{m} \right) \left(\frac{\alpha}{\beta} \right) iD_x^\beta a_j(D_x^m + \alpha - \beta) e^{\Lambda} \xi^{j-m} + A_0 \\
&= A_I + A_{II} + A_0.
\end{align*}
\] (3.3)
We consider first A_I, where $\alpha \geq 1$. In the case $m + \alpha - \beta \geq 1$, from (1.6), (1.7), (1.8), (1.9), (2.30) and (2.12) we get:

$$
\left| (\xi^e \mathcal{D}_x^\alpha e^{-\Lambda})(\mathcal{D}_x^{m+\alpha-\beta} e^{\Lambda})\mathcal{X}^{j-m} \right|
$$

$$
= \left| \partial_\xi^\alpha \prod_{k=1}^{p-1} e^{-\lambda_{p-k}} \cdot |D_{x}^{\beta} a_j| \cdot |D_{x}^{m+\alpha-\beta} \prod_{k'=1}^{p-1} e^{\alpha_{p-k'}}| \right| \xi^{j-m}
$$

$$
\leq c a_p \sum_{\alpha_1 + \ldots + \alpha_{p-1} = \alpha} \alpha! \prod_{k=1}^{p-1} |\beta^{\alpha_k} e^{-\lambda_{p-k}}| \cdot \sum_{\gamma_1 + \ldots + \gamma_{p-1} = \frac{m+\alpha-\beta}{\alpha}} \frac{(m+\alpha-\beta)!}{\gamma_1! \cdots \gamma_{p-1}!} \prod_{k'=1}^{p-1} |\partial_{\xi}^{\alpha_{k'}} e^{\gamma_{p-k'}}| \left(\xi \right)^{j-m}
$$

$$
= c a_p \sum_{\alpha_1 + \ldots + \alpha_{p-1} = \alpha} \alpha! \prod_{k=1}^{p-1} e^{-\Lambda} \left(\sum_{r_1 + \ldots + r_{q_k} = \alpha_k} \frac{C_{q,k} |\partial_{\xi}^{\alpha_1} \lambda_{p-k} \cdots |\partial_{\xi}^{\alpha_k} |\partial_{\xi}^{\gamma_{p-k}}|}{\gamma_1! \cdots \gamma_{p-1}!} \right) \xi^{j-m}
$$

$$
(3.4) \leq c' a_p \sum_{\alpha_1 + \ldots + \alpha_{p-1} = \alpha} \prod_{k,k'=1}^{p-1} M_{p-k}^{q_k} \frac{\langle x \rangle_{\alpha_k + q_k(k-1)}}{\langle x \rangle_{\alpha_k + q_k(k-1)} \langle x \rangle_{\alpha_{k'} + q_{k'}(k'-1)}} \cdot M_{p-k'}^{q_{k'}} \frac{\langle x \rangle_{\alpha_{k'} + q_{k'}(k'-1)}}{\langle x \rangle_{\alpha_{k'} + q_{k'}(k'-1)} \langle x \rangle_{\alpha_k + q_k(k-1)}} \langle x \rangle_{\alpha_k + q_k(k-1)} \langle x \rangle_{\alpha_{k'} + q_{k'}(k'-1)} \langle x \rangle_{\alpha_k + q_k(k-1)}
$$

for some $c, c' > 0$. Note that we used here conditions (1.7) only for $0 \leq \beta \leq \alpha \leq j - m - 1 \leq j - 1$. The conditions on the further D_x^{α} derivatives will be required in the following to estimate the remainders coming from the sharp-Gårding Theorem A.1 for $j \geq 3$ (see (3.23)).

Each term of (3.4) has order

$$
j - m - \alpha - \sum_{k=1}^{p-1} q_k(k-1) - \sum_{k'=1}^{p-1} p_{k'}(k'-1)
$$

and decay in x of the form

$$
\langle x \rangle_{\alpha_k + q_k(k-1) + \alpha_{k'} + q_{k'}(k'-1)}^{p-1} \leq \langle x \rangle_{\alpha_k + q_k(k-1) + \alpha_{k'} + q_{k'}(k'-1)}^{p-1}
$$

since $-(p-1)(m+\alpha-\beta) \leq -j + m + \alpha$ for $m + \alpha - \beta \geq 1$.

Note also that

$$
j - m - \alpha - \sum_{k=1}^{p-1} q_k(k-1) - \sum_{k'=1}^{p-1} p_{k'}(k'-1) \leq p - k - 1
$$

and

$$
j - m - \alpha - \sum_{k=1}^{p-1} q_k(k-1) - \sum_{k'=1}^{p-1} p_{k'}(k'-1) \leq p - k' - 1,
$$

so that whenever M_{p-k} or $M_{p-k'}$ appear in (3.4), then the order is at most $p - k - 1$ and $p - k' - 1$ respectively.
In the case \(m + \alpha - \beta = 0 \), by (1.7), (1.8), (1.9) and (2.30) we have, for all \(0 \leq \beta \leq j - 1 \) with \(1 \leq j \leq p - 1 \):

\[
\begin{align*}
&|\text{Re}[(\partial^\xi e^{-\Lambda})(iD_x^{\beta}a_j)e^{\Lambda}j^{j-m}]| \\
&\leq |\partial^\xi e^{-\Lambda}| \cdot |\text{Im} D_x^{\beta}a_j| e^{\Lambda}(\xi)^{j-m} \\
&\leq \sum_{\alpha_1 + \ldots + \alpha_{p-1} = \alpha} \frac{\alpha!}{\alpha_1! \ldots \alpha_{p-1}!} \cdot \prod_{k=1}^{p-1} \left(\sum_{\substack{r_1 + \ldots + r_{q_k} = \alpha_k \\
r_1, \ldots, r_{q_k} \geq 1}} C_{q,k} \left| \partial^{\xi_1} \lambda_{p-k} \right| \cdots \left| \partial^{\xi_{q_k}} \lambda_{p-k} \right| \right) \cdot \frac{C_{p-k}(\xi)^{j-m}}{\langle x \rangle^{j-m}} \\
&\leq C' a_p \sum_{\alpha_1 + \ldots + \alpha_{p-1} = \alpha} \prod_{k=1}^{p-1} \sum_{\substack{r_1 + \ldots + r_{q_k} = \alpha_k \\
r_1, \ldots, r_{q_k} \geq 1}} M_{q_k}(\xi)^{k-1} q_k \langle \xi \rangle^{k-1} \frac{1}{\langle x \rangle^{j-m}} \\
\end{align*}
\]

(3.5) for some \(C' > 0 \).

Each term of (3.5) is a symbol of order \(j - m - \alpha - \sum_{k=1}^{p-1} q_k(k - 1) \) and has decay in \(x \) of the form

\[
\langle x \rangle^{-j-m-\sum_{k=1}^{p-1} q_k(k-1)} \leq \langle x \rangle^{-j-m-\sum_{k=1}^{p-1} q_k(k-1)}
\]

since \([\beta/2] \leq \beta \leq \alpha + m \).

Here again

\[
j - m - \alpha - \sum_{k=1}^{p-1} q_k(k - 1) \leq p - k - 1
\]

and hence \(M_{p-k} \) appears in (3.5) only when the order is at most \(p - k - 1 \).

Summing up, formulas (3.4) and (3.5) give that the terms of order \(p - k \) of \(A_{II} \), denoted by \(A_{II|\text{ord}(p-k)} \), satisfy:

\[
|\text{Re} A_{II|\text{ord}(p-k)}| \leq \frac{C_{p-k}(\xi)^{p-k}}{\langle x \rangle^{j-m}}
\]

(3.6) for some \(C > 0 \).

Moreover, \(\text{Re} A_{II|\text{ord}(p-k)} \) depends only on \(M_{p-1}, \ldots, M_{p-k+1} \) and not on \(M_{p-k}, \ldots, M_1 \).

We consider then

\[
A_I = \sum_{m=0}^{p-1} \sum_{j=m+1}^{p} \binom{j}{m} (ia_j)(e^{-\Lambda}D_x^{m+1}e^{\Lambda})\xi^{j-m} \\
= \sum_{k=0}^{p-1} \sum_{m=0}^{k} \binom{p-k+m}{m} (ia_{p-k+m})(e^{-\Lambda}D_x^{m+1}e^{\Lambda})\xi^{p-k} \\
\]

(3.7) \[i a_{p-k} \xi^{p-k} + \sum_{k=1}^{p-1} (ia_{p-k} \xi^{p-k} + \sum_{m=1}^{k} \binom{p-k+m}{m} (ia_{p-k+m})(e^{-\Lambda}D_x^{m+1}e^{\Lambda})\xi^{p-k}) \]

Note that \(D_x \Lambda = D_x \lambda_{p-1} + D_x \lambda_{p-2} + \ldots + D_x \lambda_1 \) with \(D_x \lambda_{p-k} \xi^{p-1} \in S^{p-k} \) because of (2.12).

Moreover, from Lemma 2.7 it follows that there exist \(f_{-s} \in S^{-s} \), for \(0 \leq s \leq p - 2 \), depending
only on $\lambda_{p-1}, \ldots, \lambda_{p-s-1}$, and $f_{p+1} \in S^{-p+1}$ such that, for $\tilde{f}_0 = a_{p-k+m} f_{p+1} \xi^{p-k} \in S^0$,

$$a_{p-k+m} (e^{-\Lambda} D_x^m e^\Lambda) \xi^{p-k} = \sum_{s=0}^{p-2} f_{-s}(\lambda_{p-1}, \ldots, \lambda_{p-s-1}) a_{p-k+m} \xi^{p-k} + \tilde{f}_0,$$

and, from (2.37) for $0 \leq s \leq p - 2$,

$$|f_{-s} a_{p-k+m} \xi^{p-k}| \leq \frac{C_s a_p}{\langle x \rangle^{p-1-s}} \langle \xi^{p-k-s} \rangle \leq \frac{C_s a_p}{\langle x \rangle^{p-1}} \langle \xi \rangle^{p-k-s} \quad \forall k \geq 1$$

for some $C_s > 0$, because of (1.6)-(1.9) (with $\beta = 0$ and not using the assumption on the decay in x).

Rearranging the terms of the second addend of A_I in (3.7) and putting together all terms of order $p - k$, we can thus write, because of (3.8), (3.9):

$$A_I = ia_p \xi^p + \sum_{k=1}^{p-1} (ia_p \xi^{p-k} + ipa_p D_x \lambda_{p-k} \xi^{p-1} + B_{2-k} \xi^{p-2} + B_{3-k} \xi^{p-3} + \ldots + B_0 \xi^{p-k}) + \tilde{B}_0,$$

for some $\tilde{B}_0 \in S^0$ and $B_{s-k} \xi^{p-s} \in S^{p-k}$ of the form

$$B_{s-k} = b_{s-k}(\lambda_{p-1}, \ldots, \lambda_{p-s-k-1}) \sum_{m=1}^{k} a_{p-s+m} \in S \quad s \leq \frac{1}{2}$$

with

$$|B_{s-k}| \leq \frac{C_{s-k} a_p}{\langle x \rangle^{s-k}} \langle \xi \rangle^{s-k}$$

for some $C_{s-k} > 0$.

Setting

$$A_{0-k}^0 := ia_{p-k} \xi^{p-k} + ipa_p D_x \lambda_{p-k} \xi^{p-1}$$

$$A_{1-k}^1 := B_{2-k} \xi^{p-2} + \ldots + B_0 \xi^{p-k}$$

we write

$$A_I = ia_p \xi^p + \sum_{k=1}^{p-1} (A_{p-k}^0 + A_{p-k}^1) + \tilde{B}_0.$$

Note that $A_{p-k}^0, A_{p-k}^1 \in S^{p-k}$ and

$$|\text{Re } A_{p-k}^0| + |A_{p-k}^1| \leq \frac{C_s a_p \langle \xi \rangle^{p-k}}{\langle x \rangle^{s-k}}$$

for some $C_s > 0$ because of (1.7), (2.12) and (3.11).

Moreover, A_{p-k}^0 depends only on M_{p-k} and A_{p-k}^1 depends only on $M_{p-1}, \ldots, M_{p-k+1}$ (and not on M_{p-k}, \ldots, M_I) since its sum of terms of the form $B_{s-k} \xi^{p-s}$, for $2 \leq s \leq k$, which depend only on M_j with $j \geq p + s - k - 1 \geq p - k + 1$, by (3.10).

Formulas (3.6) and (3.12)-(3.13) together give (3.1). Step 1 is completed.

Step 2. We now look at the real part of

$$A_{p-k} := (e^{-\Lambda} A e^\Lambda)_{\text{ord}(p-k)} = A_I|_{\text{ord}(p-k)} + A_{II}|_{\text{ord}(p-k)}$$

$$= A_{p-k}^0 + A_{p-k}^1 + A_{II}|_{\text{ord}(p-k)}, \quad k = 1, \ldots, p - 1.$$
From (1.7)-(1.9), for $|\xi| \geq 2h$, we have
\[
\text{Re} A_{p-k} = \text{Re}(ia_p D_x \lambda_{p-k} \xi^{p-1} + ia_{p-k} \xi^{p-k})
\]
\[
= a_p \xi^{p-1} M_{p-k} \frac{|\xi|^{p-1}}{|\xi|^{p-1}} \frac{\langle x \rangle}{|\xi|^{p-1}} \psi \left(\frac{\langle x \rangle}{|\xi|^{p-1}} \right) \frac{\langle \xi \rangle_h^k}{|\xi|^{p-1}} - \text{Im} a_{p-k} \cdot \xi^{p-k}
\]
\[
\geq \left(\frac{2}{\sqrt{5}} \right) a_p \frac{M_{p-k}}{\langle x \rangle^{p-1}} \frac{\langle \xi \rangle_h^p}{|\xi|^{p-1}} - C \frac{\langle \xi \rangle_h^k}{|\xi|^{p-1}} (1 - \psi)
\]
(3.14)
\[
\geq a_p \psi \cdot (2^{p-1} - \frac{1}{2} M_{p-k} - C) \frac{\langle \xi \rangle_h^p}{|\xi|^{p-1}} - C''
\]
for some $C'' > 0$ since $|\xi| = 2^{p-1} \sqrt{\xi^2 + \xi^2} \geq \frac{2}{\sqrt{5}} \langle \xi \rangle_h$ and $\langle \xi \rangle_h^p/|\xi|$ is bounded on the support of $(1 - \psi)$.

From (3.14), (3.13) and (3.6):
\[
\text{Re} A_{p-k} = \text{Re}(A^0_{p-k}) + \text{Re}(A^1_{p-k}) + \text{Re}(A_{II}|_{\text{ord}(p-k)})
\]
(3.15)
\[
\geq a_p \psi \cdot (2^{p-1} - \frac{1}{2} M_{p-k} - C) \frac{\langle \xi \rangle_h^p}{|\xi|^{p-1}} - C'' - (C_k + C') a_p \frac{\langle \xi \rangle_h^p}{|\xi|^{p-1}},
\]
where the constants C, C', C'', C_k depend only on $M_{p-1}, \ldots, M_{p-k+1}$ and not on M_{p-k}.

In particular, for $k = 1$,
\[
\text{Re} A_{p-1} \geq a_p \psi \cdot (2^{p-1} - \frac{1}{2} M_{p-1} - C - C_1 - C'') \frac{\langle \xi \rangle_h^p}{|\xi|^{p-1}} - C''
\]
for some $C'' > 0$.

Since $a_p \geq 0$ by assumption, we can choose $M_{p-1} > 0$ sufficiently large, so that
\[
\text{Re} A_{p-1}(t, x, \xi) \geq -\tilde{C} \quad \forall (t, x, \xi) \in [0, T] \times \mathbb{R} \times \mathbb{R}
\]
for some $\tilde{C} > 0$. Applying the sharp-Gårding Theorem A.1 to $A_{p-1} + \tilde{C}$ we can thus find pseudo-differential operators $Q_{p-1}(t, x, D_x)$ and $R_{p-1}(t, x, D_x)$ with symbols $Q_{p-1}(t, x, \xi) \in S^{p-1}$ and $R_{p-1}(t, x, \xi) \in S^{p-2}$ such that
(3.16) $A_{p-1}(t, x, D_x) = Q_{p-1}(t, x, D_x) + R_{p-1}(t, x, D_x) - \tilde{C}$
\[
\text{Re}(Q_{p-1}(t, x, D_x) v(t, x), v(t, x)) \geq 0 \quad \forall v(t, x) \in C_0^\infty([0, T] \times \mathbb{R}, H^{p-1}(\mathbb{R})
\]
\[
R_{p-1}(t, x, \xi) \sim \psi_1(\xi) D_x A_{p-1}(t, x, \xi) + \sum_{\alpha + \beta \geq 2} \psi_{\alpha, \beta}(\xi) \partial_\xi^\alpha \partial_x^\beta A_{p-1}(t, x, \xi)
\]
with $\psi_1 \in S^{-1}, \psi_{\alpha, \beta} \in S^{(\alpha - \beta)/2}, \psi_1, \psi_{\alpha, \beta} \in \mathbb{R}$.

Therefore, after having applied once the sharp-Gårding Theorem A.1, from (3.3), (3.12) and (3.16) we get:
\[
\sigma(e^{-A} Ae^A) = ia_p \xi^p + \sum_{k=1}^{p-1} A_{p-k} + A_0' = ia_p \xi^p + A_{p-1} + \sum_{k=2}^{p-1} A_{p-k} + A_0'
\]
(3.17)
\[
= ia_p \xi^p + Q_{p-1} + \sum_{k=2}^{p-1} (A_{I}|_{\text{ord}(p-k)} + A_{II}|_{\text{ord}(p-k)} + R_{p-1}|_{\text{ord}(p-k)}) + A_0''
\]
for some $A_0', A_0'' \in S^0$, where $R_{p-1}|_{\text{ord}(p-k)}$ denotes the terms of order $p - k$ of R_{p-1}.

Step 2 is completed.
Step 3. In order to reapply Theorem A.1 we now have to investigate the action of the sharp-Gårding Theorem to each term of the form $A_l|_{\text{ord}(p-k)} + A_l|_{\text{ord}(p-k)} + S_{p-k}$, where S_{p-k} denotes terms of order $p-k$ coming from remainders of previous applications of Theorem A.1, for $p-k \geq 3$. In the following substeps we compute and estimate the generic remainder $R(A_l|_{\text{ord}(p-k)}) + R(A_l|_{\text{ord}(p-k)}) + R(S_{p-k})$.

Step 3.1: estimate of $R(A_l|_{\text{ord}(p-k)}) = R(A^0_{p-k}) + R(A^1_{p-k})$.

From the sharp-Gårding Theorem A.1:

\[
R(A^0_{p-k}) = \psi_1 D_x A^0_{p-k} + \sum_{\alpha+\beta \geq 2} \psi_{\alpha,\beta} \partial_x^\alpha D_x^\beta A^0_{p-k}
\]

for real valued $\psi_1 \in S^{-1}$ and $\psi_{\alpha,\beta} \in S^{(\alpha-\beta)/2}$.

We have

\[
\psi_1 D_x A^0_{p-k} = \psi_1 D_x(i \alpha p D_x \lambda_{p-k} \xi^{p-1} + i a_{p-k} \xi^{p-k})
\]

\[
= i \alpha p D_x^2 \lambda_{p-k} (\psi_1 \xi^{p-1}) + i D_x a_{p-k} (\psi_1 \xi^{p-k})
\]

and by (1.7):

\[
|\text{Re}(\psi_1 D_x A^0_{p-k})| \leq |\text{Im} D_x a_{p-k}| \cdot |\psi_1 \xi^{p-k}|
\]

\[
\leq \frac{C \alpha p}{\langle x \rangle^{p-k}} \langle \psi_1 \xi^{p-k} \rangle \leq \frac{C' \alpha p}{\langle x \rangle^{p-k-1}} \langle \xi \rangle^{p-k-1}
\]

\[
\leq a_p \psi \left(\frac{\langle x \rangle}{\langle \xi \rangle^{p-k-1}} \right) \frac{C' \langle \xi \rangle^{p-k-1}}{\langle x \rangle^{p-k-1}} + C''
\]

(3.19)

since $\psi_1 \in S^{-1}$ and $\langle \xi \rangle^{p-k-1}/\langle x \rangle^{p-k-1}$ is bounded on supp$(1 - \psi)$.

Let us now estimate

\[
\sum_{\alpha+\beta \geq 2} \psi_{\alpha,\beta} \partial_x^\alpha D_x^\beta A^0_{p-k} = \sum_{\alpha+\beta \geq 2} \psi_{\alpha,\beta} \partial_x^\alpha D_x^\beta (i \xi^{p-k} a_{p-k} + i \alpha p \xi^{p-1} D_x \lambda_{p-k})
\]

\[
= \sum_{\alpha+\beta \geq 2} \psi'_{\alpha,\beta} \xi^{p-k-\alpha} i D_x^\beta a_{p-k} + \alpha p \sum_{\alpha+\beta \geq 2} i \psi_{\alpha,\beta} \partial_x^\alpha (\xi^{p-1} D_x^\beta \lambda_{p-k})
\]

(3.20)

for $\psi'_{\alpha,\beta} = \psi_{\alpha,\beta}(p-k)(p-k-1) \cdots (p-k-\alpha+1)$.

Note that $\psi'_{\alpha,\beta} \xi^{p-k-\alpha} i D_x^\beta a_{p-k} \in S^{p-k-\alpha-\beta/2}$, so it has to be considered at level $p-k - \alpha-\beta/2$ if $\alpha + \beta$ is even, at level $p-k - \alpha-\beta/2 + 1/2$ if $\alpha + \beta$ is odd, thus at level $p-k + \lfloor \frac{-\alpha-\beta}{2} + \frac{1}{2} \rfloor$. Looking also at its decay as $x \to \infty$, we have by (1.7), for $p-k \geq 3$:

\[
|\text{Re}(\psi'_{\alpha,\beta} \xi^{p-k-\alpha} i D_x^\beta a_{p-k})| \leq \langle \xi \rangle^{p-k-\alpha-\beta/2} \frac{C \alpha p}{\langle x \rangle^{p-k-\lfloor \frac{-\alpha-\beta}{2} + \frac{1}{2} \rfloor}}
\]

\[
\leq C \alpha p \psi \left(\frac{\langle x \rangle}{\langle \xi \rangle^{p-k-\lfloor \frac{-\alpha-\beta}{2} + \frac{1}{2} \rfloor}} \right) \frac{\langle \xi \rangle^{p-k+\lfloor \frac{-\alpha-\beta}{2} + \frac{1}{2} \rfloor}}{\langle x \rangle^{p-k-\lfloor \frac{-\alpha-\beta}{2} + \frac{1}{2} \rfloor}} + C''
\]

(3.21)

for some $C' > 0$, since

\[
\left[\frac{b}{2} \right] \geq \left[\frac{a+b}{2} + \frac{1}{2} \right] \quad \forall a, b \geq 0.
\]

(3.22)
We remark that decay estimates of the form (3.21) are needed until level \(p - k - \frac{\alpha + \beta}{2} \geq \frac{1}{2} \), i.e.

\[
0 \leq \left[\frac{\beta}{2} \right] \leq p - k - 1, \quad \text{for } p - k \geq 3.
\]

To evaluate the second addend of (3.20) we write:

\[
i\psi_{\alpha,\beta} i\partial_x^\gamma (\xi^{p-1} D_x^{\beta+1} \lambda_{p-k}) = i\psi'_{\alpha,\beta} \xi^{p-1-\alpha} D_x^{\beta+1} \lambda_{p-k}
\]

\[
+ i\psi''_{\alpha,\beta} \sum_{\gamma = 1}^{\alpha} \left(\frac{\alpha}{\gamma} \right) \xi^{p-1-\alpha+\gamma} \partial_\xi D_x^{\beta+1} \lambda_{p-k}
\]

for \(\psi'_{\alpha,\beta}, \psi''_{\alpha,\beta} \in S^{\frac{-\alpha}{2}} \).

From (2.12) we have that \(i\psi''_{\alpha,\beta} \xi^{p-1-\alpha} D_x^{\beta+1} \lambda_{p-k} \in S^{p-1-\frac{\alpha + \beta}{2}} \) and has the “right decay” independently on the assumptions on the coefficients because of

\[
|D_x^{\beta+1} \lambda_{p-k}| \leq \frac{C_{k,\beta}}{\langle x \rangle^{\frac{p-k+\alpha + \beta}{p-1}}},
\]

since \(\beta(p - 1) \geq \left[-\frac{\alpha + \beta}{2} + \frac{1}{2} \right] \).

To estimate the second addend of (3.24) we write, by (2.24) for \(|\xi| \geq 2h \),

\[
i\psi''_{\alpha,\beta} \left(\frac{\alpha}{\gamma} \right) \xi^{p-1-\alpha+\gamma} \partial_\xi D_x^{\beta+1} \lambda_{p-k} = i\psi''_{\alpha,\beta} \left(\frac{\alpha}{\gamma} \right) \xi^{p-1-\alpha+\gamma} (B_{k,\gamma,\beta+1} + C_{k,\gamma,\beta+1} + D_{k,\gamma,\beta+1})
\]

with

\[
B_{k,\gamma,\beta+1} = M_{p-k} \frac{|\xi|^{p-1}}{\xi^{p-1}} D_x^{\beta} \langle x \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle x \rangle}{\xi^{p-1}} \right) \partial_\xi \langle \xi \rangle_{h}^{-k+1}
\]

\[
C_{k,\gamma,\beta+1} = M_{p-k} \frac{|\xi|^{p-1}}{\xi^{p-1}} \sum_{\beta' = 1}^{\beta} \left(\frac{\beta}{\beta'} \right) D_x^{\beta-\beta'} \langle x \rangle^{-\frac{p-k}{p-1}} D_x^{\beta'} \psi \left(\frac{\langle x \rangle}{\xi^{p-1}} \right) \partial_\xi \langle \xi \rangle_{h}^{-k+1}
\]

\[
D_{k,\gamma,\beta+1} = M_{p-k} \frac{|\xi|^{p-1}}{\xi^{p-1}} \sum_{\beta' = 0}^{\beta} \left(\frac{\beta}{\beta'} \right) D_x^{\beta-\beta'} \langle x \rangle^{-\frac{p-k}{p-1}} \sum_{\gamma' = 1}^{\gamma} \left(\frac{\gamma}{\gamma'} \right) \partial_\xi \langle \xi \rangle_{h}^{-k+1} \cdot \sum_{r_1 + \ldots + r_q = \gamma'} C_{q,r} \sum_{\beta'' = 0}^{\beta'} \left(\frac{\beta'}{\beta''} \right) D_x^{\beta'-\beta''} \psi^{(q)} \left(\frac{\langle x \rangle}{\xi^{p-1}} \right) D_x^{\beta''} \langle \xi \rangle_{h}^{q}.
\]

since \(\omega(s)(\xi/h) = 0 \) for all \(s \geq 1 \) if \(|\xi| \geq 2h \).

Note that, as in (3.25),

\[
\left| D_x^{\beta} \langle x \rangle^{-\frac{p-k}{p-1}} \psi \left(\frac{\langle x \rangle}{\xi^{p-1}} \right) \right| \leq \frac{c}{\langle x \rangle^{\frac{p-k+\alpha + \beta}{p-1}}} \leq \frac{c}{\langle x \rangle^{\frac{p-k+\alpha + \beta}{p-1}}}
\]

for some \(c > 0 \). Moreover, \(i\psi''_{\alpha,\beta}(\gamma) \xi^{p-1-\alpha+\gamma} B_{k,\gamma,\beta+1} \) is of order \(p - k - \frac{\alpha + \beta}{2} \), thus we have, for some \(c' > 0 \):

\[
\left| i\psi''_{\alpha,\beta}(\gamma) \xi^{p-1-\alpha+\gamma} B_{k,\gamma,\beta+1} \langle x, \xi \rangle \right| \leq \frac{c'}{\langle x \rangle^{\frac{p-k+\alpha + \beta}{p-1}}},
\]
On the other hand,
\[
|\psi_{\alpha,\beta}^{m} e^{p-1-\alpha+\gamma}C_{k,\gamma,\beta+1}| \leq c \langle \xi \rangle_{h}^{-\alpha+\beta+\gamma-k+1} \sum_{\beta=1}^{\beta} \langle x \rangle^{-\frac{p-k}{p-1} - \beta + \beta'} \left| \partial_{x}^{\beta'} \psi \left(\frac{\langle x \rangle}{\langle \xi \rangle_{h}^{p-1}} \right) \right|
\]
\[
\leq c \langle \xi \rangle_{h}^{-\frac{p-k}{p-1}} \sum_{\beta'=1}^{\beta} \langle x \rangle^{-\beta + \beta'} \cdot \sum_{r_{1}+\ldots+r_{q}=\beta'} C_{q,r} \left| \psi(q) \right| \left| \partial_{x}^{r_{q}} \frac{\langle x \rangle}{\langle \xi \rangle_{h}^{p-1}} \right| \langle \xi \rangle_{h}^{q(p-1)+\beta'} \chi_{\text{supp } \psi'}
\]
\[
\leq c_{2} \sum_{\beta',\beta''=0}^{\beta} \sum_{\gamma=1}^{\gamma} \sum_{r_{1}+\ldots+r_{q}=\gamma'} \langle \xi \rangle_{h}^{-\alpha+\beta+\gamma-k+1} \langle x \rangle^{-\beta + \beta'} \langle \xi \rangle_{h}^{q(p-1)+\beta'} \chi_{\text{supp } \psi'}
\]
\[
\leq c_{3}
\]
for some \(c, c', c'' > 0 \) since \(\langle \xi \rangle_{h}/\langle x \rangle^{\frac{1}{p-1}} \) is bounded on \(\text{supp } \psi \).

Analogously,
\[
|\psi_{\alpha,\beta}^{m} e^{p-1-\alpha+\gamma}D_{k,\gamma,\beta+1}| \leq c_{1} \sum_{\beta'=0}^{\beta} \sum_{\gamma=1}^{\gamma} \sum_{r_{1}+\ldots+r_{q}=\gamma'} \langle \xi \rangle_{h}^{-\alpha+\beta+\gamma-k+1} \langle x \rangle^{-\beta + \beta'} \leq c_{2}
\]
for some \(c_{1}, c_{2}, c_{3} > 0 \).

Summing up, we have obtained, for the second addend of (3.18), that
\[
|\text{Re} \sum_{\alpha+\beta \geq 2} \psi_{\alpha,\beta} \partial_{\xi}^{\alpha} D_{x}^{\beta} A_{p-k}^{0}| \leq C a_{p} \langle \xi \rangle_{h}^{p-k+1} \langle x \rangle^{-\frac{p-k}{p-1} + \frac{\alpha+\beta + \frac{1}{2}}{2}} \psi + C'
\]
for some \(C, C' > 0 \), because of (3.21), (3.25) and (3.26). Note that only in (3.21) the assumptions (1.7) are used. We have thus proved, looking also at (3.19), that \(R(A_{p-k}^{0}) \) has the “right decay” and, moreover, it depends only on \(M_{p-k} \) and not on \(M_{j} \) for \(j \neq p-k \).

We now estimate the remainder
\[
R(A_{p-k}^{1}) = \sum_{s=2}^{k} R(B_{s-k} e^{p-s})
\]
(3.27)
\[
= \sum_{s=2}^{k} \left[\psi_{1} D_{x}(B_{s-k} e^{p-s}) + \psi_{\alpha,\beta} \partial_{\xi}^{\alpha} D_{x}^{\beta} (B_{s-k} e^{p-s}) \right]
\]
for \(\psi_{1} \in S^{-1}, \psi_{\alpha,\beta} \in S^{\alpha+\beta} \) and \(B_{s-k} \) defined by (3.10).

We have
\[
\psi_{1} D_{x}(e^{p-s} B_{s-k}) = \psi_{1} e^{p-s} (D_{x} B_{s-k}) \sum_{m=1}^{k} a_{p-s+m} + \psi_{1} e^{p-s} b_{s-k} D_{x} \left(\sum_{m=1}^{k} a_{p-s+m} \right).
\]
From (2.37):

\[
|b_{s-k}| \leq \frac{C_{s-k}}{\langle x \rangle^{p-k+1}} \langle \xi \rangle^{s-k} \leq \frac{C_{s-k}}{\langle x \rangle^{p-k+1}} \langle \xi \rangle^{s-k}
\]

\[
|D_x b_{s-k}| \leq \frac{C'_{s-k}}{\langle x \rangle^{p-k+1}} \langle \xi \rangle^{s-k} \leq \frac{C'_{s-k}}{\langle x \rangle^{p-k+1}} \langle \xi \rangle^{s-k},
\]

dependently of the conditions on the \(x\) for some \(C\).

therefore, for each \(2 \leq s \leq k\),

\[
(3.28) \quad \left| \psi \sum_{s=2}^{k} D_x (B_{s-k} \xi^{s-s}) \right| \leq c a_p \frac{\langle \xi \rangle^{p-k-1}}{\langle x \rangle^{p-k+1}} \leq c a_p \psi \frac{\langle \xi \rangle^{p-k-1}}{\langle x \rangle^{p-k+1}} + c'
\]

for some \(c, c' > 0\), because of (1.6)-(1.9) (with \(\beta = 0\) and not using the assumptions on the decay in \(x\)).

For the second addend of (3.27) we write

\[
\sum_{\alpha + \beta \geq 2} \psi_{\alpha, \beta} \partial_\xi^\alpha D_\xi^\beta (B_{s-k} \xi^{p-s}) = \psi_{\alpha, \beta} \sum_{\alpha = 0}^{a} \left(\frac{\alpha}{\alpha'} \right) (\partial_\xi^\alpha \xi^{p-s}) (\partial_\xi^{\alpha'} D_\xi^\beta B_{s-k})
\]

\[
= \sum_{\alpha + \beta \geq 2} \sum_{\alpha'=0}^{a} \left(\frac{\alpha}{\alpha'} \right) \psi_{\alpha, \beta} \xi^{p-s-\alpha+\alpha'} \sum_{\beta=0}^{\beta} \left(\frac{\beta}{\beta'} \right) (\partial_\xi^{\alpha'} D_\xi^{\beta'} b_{s-k}) D_\xi^{\beta-\beta'} (\sum_{m=1}^{k} a_{p-s+m})
\]

for \(\psi_{\alpha, \beta} \in S_{\frac{a}{2}}^{+}\) and \(\partial_\xi^{\alpha'} D_\xi^{\beta'} b_{s-k} \in S_{s-k-\alpha'}^{-}\), because of (2.37).

Therefore \(\psi_{\alpha, \beta} \xi^{p-s-\alpha+\alpha'} (\partial_\xi^{\alpha'} D_\xi^{\beta'} b_{s-k}) \in S_{p-k-\alpha+\beta}^{+}\) and, by (2.37),

\[
\left| \psi_{\alpha, \beta} \xi^{p-s-\alpha+\alpha'} (\partial_\xi^{\alpha'} D_\xi^{\beta'} b_{s-k}) \right| \leq \frac{C'_{s-k}}{\langle x \rangle^{p-k+1}} \langle \xi \rangle^{p-k-\alpha+\beta} \langle \xi \rangle^{s-k} \leq \frac{C'_{s-k}}{\langle x \rangle^{p-k-1+\frac{\alpha+\beta}{2}}} \langle \xi \rangle^{s-k} \langle \xi \rangle^{p-k+\frac{\alpha+\beta}{2}}
\]

for some \(C'_{s-k} > 0\), since \(\beta' \geq \left[-\frac{\alpha+\beta}{2} + 1 \right] \).

This, together with (3.28), means that \(R(A_{p-k})\) satisfies the “right decay at the right level”, independently of the conditions on the \(x\)-decay of the coefficients.

Step 3.2: estimate of \(R(A_{II} |_{\text{ord}(p-k)})\).

We write

\[
R \left((i D_\xi^\alpha a_j) (i D_\xi^\beta e^{-\lambda}) (D_\xi^{m+\alpha+\beta} e^\lambda) \xi^{j-m} \right) = \psi_1 D_\xi \left[(i D_\xi^\alpha a_j) (i D_\xi^\beta e^{-\lambda}) (D_\xi^{m+\alpha+\beta} e^\lambda) \xi^{j-m} \right]
\]

\[
(3.29) + \sum_{\alpha + \beta \geq 2} \psi_{\alpha', \beta'} \partial_\xi^{\alpha'} (i D_\xi^\beta a_j) (i D_\xi^\beta e^{-\lambda}) (D_\xi^{m+\alpha+\beta} e^\lambda) \xi^{j-m}
\]

for \(\psi_1 \in S^{-1}\) and \(\psi_{\alpha', \beta'} \in S_{\frac{\alpha'+\beta'}{2}}^{-}\).

In order to avoid further computations analogous to those already made for the estimate of \(A_{II}\), we make some remarks. When the \(x\)-derivatives fall on \((\partial_\xi^\alpha e^{-\lambda}) (D_\xi^{m+\alpha+\beta} e^\lambda)\), the decay in \(x\) gets better, while the level in \(\xi\) decreases, because of Lemma 2.5. Therefore we still have the “right decay”. When the \(x\)-derivatives fall on \(D_\xi^\beta a_j\) the assumptions (1.7) on the coefficients give a decay in \(\langle x \rangle\) of order \((j - \left[\frac{p-1}{2} \right])/(p-1)\) in the first addend of (3.29) and of order \((j - \left[\frac{p+1}{2} \right])/(p-1)\) in the second addend of (3.29); at the same time we have that the level in \(\xi\) decreases of 1 in the first addend of (3.29) and of \(\alpha' - \frac{\alpha'-\beta'}{2} = \frac{\alpha'+\beta'}{2}\) in the second addend of...
(3.29). Therefore the assumptions (1.7) on the coefficients still give the “right decay”, since

\[
-\left\lfloor \frac{\beta + 1}{2} \right\rfloor \geq \left\lfloor -\frac{\beta}{2} - 1 + \frac{1}{2} \right\rfloor
\]

(3.30)

because of (3.22) with \(b = \beta + 1, a = 1 \) and \(b = \beta + \beta', a = \alpha' \) respectively.

Thus, conditions (1.7) still give the “right decay” for \(R(\mathcal{A}_I) \), and hence for \(R(\mathcal{A}_I|_{\text{ord}(p-k)}) \).

Step 3.3: estimate of remainders coming from previous applications of the sharp-Gårding Theorem A.1.

To estimate \(S_{p-k} \) and then \(R(S_{p-k}) \) we previously need to make some remarks.

From (3.17) with \(R_{p-1} = R(\mathcal{A}_{p-1}) \) we have

\[
\sigma(e^{-\Lambda} \mathcal{A} e^{\Lambda}) = i a_{p} \xi^{p} + Q_{p-1} + R(\mathcal{A}_{p-1}) + \sum_{k=2}^{p-1} A_{p-k} + A_{0}''
\]

\[
= i a_{p} \xi^{p} + Q_{p-1} + A_{p-2} + R(\mathcal{A}_{p-1})|_{\text{ord}(p-2)} + \sum_{k=3}^{p-1} (A_{p-k} + R(\mathcal{A}_{p-1})|_{\text{ord}(p-k)}) + A_{0}''
\]

From (3.15) for \(k = 2 \) and from the above discussions on the remainders \(R(\mathcal{A}_{0}|_{p-k}), R(\mathcal{A}_{1}|_{p-k}) \) and \(R(\mathcal{A}_{I}|_{\text{ord}(p-k)}) \) for \(k = 1 \), we can now choose \(M_{p-2} > 0 \) sufficiently large so that

\[
\text{Re} \left(A_{p-2} + R(\mathcal{A}_{p-1})|_{\text{ord}(p-2)} \right) (t, x, \xi) \geq -\tilde{C} \quad \forall (t, x, \xi) \in [0, T] \times \mathbb{R} \times \mathbb{R}
\]

for some \(\tilde{C} > 0 \).

Note that \(A_{p-2} \) depends on \(M_{p-1} \) and \(M_{p-2} \) in the sense of (3.15), while \(R(\mathcal{A}_{p-1})|_{\text{ord}(p-2)} \) depends only on the already chosen \(M_{p-1} \). Thus, by the sharp-Gårding Theorem A.1 there exist pseudo-differential operators \(Q_{p-2} \) and \(R_{p-2} \), with symbols in \(S^{p-2} \) and \(S^{p-3} \) respectively, such that

\[
\text{Re}(Q_{p-2} v, v) \geq 0 \quad \forall v(t, \cdot) \in H^{p-2}
\]

\[
A_{p-2} + R(\mathcal{A}_{p-1})|_{\text{ord}(p-2)} = Q_{p-2} + R_{p-2},
\]

with

\[
R_{p-2} = R(\mathcal{A}_{p-2} + R(\mathcal{A}_{p-1})|_{\text{ord}(p-2)}) = R(\mathcal{A}_{p-2}) + R(R(\mathcal{A}_{p-1})|_{\text{ord}(p-2)}),
\]

so that

\[
\sigma(e^{-\Lambda} \mathcal{A} e^{\Lambda}) = i a_{p} \xi^{p} + Q_{p-1} + Q_{p-2} + R(\mathcal{A}_{p-2}) + R(R(\mathcal{A}_{p-1})|_{\text{ord}(p-2)})
\]

\[
+ \sum_{k=3}^{p-1} (A_{p-k} + R(\mathcal{A}_{p-1})|_{\text{ord}(p-k)}) + A_{0}'
\]

\[
= i a_{p} \xi^{p} + Q_{p-1} + Q_{p-2}
\]

\[
+ \left(A_{p-3} + R(\mathcal{A}_{p-1})|_{\text{ord}(p-3)} + R(\mathcal{A}_{p-2})|_{\text{ord}(p-3)} + R^2(\mathcal{A}_{p-1})|_{\text{ord}(p-3)} \right)
\]

\[
+ \sum_{k=4}^{p-1} \left(A_{p-k} + R(\mathcal{A}_{p-1})|_{\text{ord}(p-k)} + R(\mathcal{A}_{p-2})|_{\text{ord}(p-k)} + R^2(\mathcal{A}_{p-1})|_{\text{ord}(p-k)} \right) + A_{0}'.
\]
To proceed analogously for the terms of order $p - 3$, then $p - 4$ and so on up to order 3, we thus need to estimate, for $p - k \geq 3$ and $s \geq 2$:

$$R^s(A_{p-k}) = R^s(A_{p-k}^0) + R^s(A_{p-k}^1) + R^s(A_{II|\text{ord}(p-k)}).$$

The arguments are analogous to those already made for the discussion of $R(A_{p-k}^0)$, $R(A_{p-k}^1)$ and $R(A_{II|\text{ord}(p-k)})$. Indeed, in the remainders of the sharp-Gårding Theorem A.1 we have a first addend with some $\tilde{V}_1 \in S^{-1}$ and where some derivatives D_x appears and a second addend with some $\psi_{\alpha',\beta'} \in S^{'-\beta'}$ and where some derivatives $\partial^\beta_x D_x^\beta'$ appear.

When the x-derivatives fall on λ_{p-j} the decay in x gets better by (2.13), while the level in ξ decreases, so that we still have the “right decay”.

When the x-derivatives fall on the coefficients then the assumptions (1.7) still give the “right decay” since the level in ξ decreases of $\frac{\alpha' + \beta'}{2}$ (for $\alpha' = \beta' = 1$ in the first addend) and because of (3.30).

Therefore, remainders coming from the sharp-Gårding Theorem A.1 always have the “right decay”.

All these computations show that we can apply again and again the sharp-Gårding Theorem A.1 until we find pseudo-differential operators $Q_{p-1}, Q_{p-2}, \ldots, Q_3$ of order $p - 1, p - 2, \ldots, 3$ respectively and all positive definite, such that

$$\sigma(e^{-A}A^p) = i\alpha_p\xi^p + Q_{p-1} + Q_{p-2} + \ldots Q_3 + \sum_{k=p-2}^{p-1} (A_{p-k} + S_{p-k}) + \tilde{A}_0$$

for some $\tilde{A}_0 \in S^0$ and S_{p-k} coming from remainders of the sharp-Gårding theorem.

Step 4. We argue similarly as in the previous steps to choose $M_2 > 0$ such that

$$\text{Re}(A_2 + S_2) \geq 0$$

(up to a constant that we can put in \tilde{A}_0), but then we apply the Fefferman-Phong inequality (A.3), instead of the sharp-Gårding Theorem A.1, and get that

$$\text{Re}(\langle (A_2 + S_2)v, v \rangle) \geq -c\|v\|_0^2 \quad \forall v(t, \cdot) \in H^2$$

for some $c > 0$, without any remainder.

Finally, we choose $M_1 > 0$ such that

$$\text{Re}(A_1 + S_1) \geq 0,$$

we apply the sharp-Gårding inequality (A.2) for $m = 1$ and we finally get

$$\sigma(e^{-A}A^p) = i\alpha_p\xi^p + \sum_{s=1}^{p-3} Q_{p-s} + (A_2 + S_2) + (A_1 + S_1) + \tilde{A}_0$$

with

$$\text{Re}(Q_{p-s}v, v) \geq 0 \quad \forall v(t, \cdot) \in H^{p-s}, \ s = 1, 2, \ldots, p - 3$$
$$\text{Re}(\langle (A_2 + S_2)v, v \rangle) \geq -c\|v\|_0^2 \quad \forall v(t, \cdot) \in H^2$$
$$\text{Re}(\langle (A_1 + S_1)v, v \rangle) \geq -c\|v\|_0^2 \quad \forall v(t, \cdot) \in H^1.$$
A. Ascanelli, C. Boiti and L. Zanghirati 25

\[\sigma(e^{-A}A^me^A) = \sum_{s=0}^{p} Q_{p-s}^{n,m} \]

with \(Q_{0}^{n,m} \in S^0 \) and

\[\text{Re} \langle Q_{p-s}^{n,m}v, v \rangle \geq -C_{n,m} \| v \|_0^2 \quad \forall v(t, \cdot) \in H^{p-s} \quad 1 \leq s \leq p - 1 \]

for some \(C_{n,m} > 0 \).

Since every \(Q \in S^0 \) also satisfies

\[\text{Re} \langle Qv, v \rangle \geq -c \| v \|_0^2 \quad \forall v \in H^0 \]

for some \(c > 0 \), by Lemma 2.6 we finally have that

\[\text{Re} \langle A\Lambda v, v \rangle \geq -c \| v \|_0^2 \quad \forall v \in H^\infty \]

for some \(c > 0 \), and hence if \(v \in C([0, T]; H^\infty) \) is a solution of (2.2), by (2.1) with \(A\Lambda \) instead of \(A \) we get that

\[\frac{d}{dt} \| v \|^2_0 \leq \| f\Lambda \|^2_0 + \| v \|^2_0 - 2 \text{Re} \langle A\Lambda v, v \rangle \leq (2c + 1)(\| f\Lambda \|^2_0 + \| v \|^2_0). \]

By standard arguments we deduce that, for all \(s \in \mathbb{R} \), it holds

\[\| v(t, \cdot) \|^2_s \leq c'(\| g\Lambda \|^2_s + \int_0^t \| f\Lambda (\tau, \cdot) \|^2_s d\tau) \quad \forall t \in [0, T], \]

for some \(c' > 0 \).

Since \(e^{\Lambda} \in S^\delta \), for \(u = e^{\Lambda}v \) we finally have, from (3.31) with \(s - \delta \) instead of \(s \):

\[\| u \|^2_{s-2\delta} \leq c_1 \| v \|^2_{s-\delta} \leq c_2 \left(\| g\Lambda \|^2_{s-\delta} + \int_0^t \| f\Lambda (\tau, \cdot) \|^2_{s-\delta} d\tau \right) \]

\[\leq c_3 \left(\| g \|^2_s + \int_0^t \| f \|^2_s d\tau \right) \]

for some \(c_1, c_2, c_3 > 0 \).

This proves the existence of a solution \(u \in C([0, T]; H^\infty(\mathbb{R})) \) of (1.2) which satisfies (1.10) for \(\sigma = 2\delta = 2(p - 1)M_{p-1} \).

Remark 3.1. We have shown that a loss of derivatives appears in the solution of (1.2). The loss comes from (2.5), more precisely from (2.7). If condition (1.7) for \(\beta = 0 \) and \(j = p - 1 \) is substituted by the slightly stronger condition

\[| \text{Im} a_{p-1}(t, x) | \leq \frac{Ca_p(t)}{\langle x \rangle^{1+\eta}} \]

for some \(\eta > 0 \), then, by defining

\[\lambda_{p-1}(x, \xi) = M_{p-1} \omega \left(\frac{\xi}{h} \right) \int_0^x \langle y \rangle^{-1-\eta} \psi \left(\frac{\langle y \rangle}{\langle \xi \rangle_h^{p-1}} \right) dy , \]

(cfr. (2.4)), our method gives well-posedness of (1.2) in Sobolev spaces without any loss of derivatives.
Remark 3.2. We remark that, for $\beta = 1$, we can weaken condition (1.7) by

$$| \text{Im} \, D_x a_j(t, x) | \leq \frac{C a_p(t)}{\langle x \rangle^{p-1}} \quad \forall (t, x) \in [0, T] \times \mathbb{R}, \ 3 \leq j \leq p - 1. \quad (3.32)$$

Indeed, a decay of type $\langle x \rangle^{-j + \beta / 2} + (p-1)$ instead of $\langle x \rangle^{-j + \beta}$ is needed only in (3.21) (see also (3.19)), but if $\beta = 1$ we can improve (3.22) by

$$-1 \geq \left[-\frac{a + 1}{2} + \frac{1}{2} \right] \quad \forall a \geq 1. \quad (3.33)$$

Similarly, in the remainders of Steps 3.2 and 3.3 it’s enough to use (3.32) instead of (1.7) for $\beta = 1$.

Acknowledgements: We are really grateful to Dr. Torsten Herrmann who carefully read our paper and pointed out the sufficiency of condition (3.32) for $\beta = 1$.

Appendix A. Sharp-Gårding and Fefferman-Phong inequalities for pseudo-differential operators

Let $A(x, D_x)$ be a pseudo-differential operator of order m on \mathbb{R} with symbol $A(x, \xi)$ in the standard class S^m defined by

$$| \partial_\xi^\alpha \partial_x^\beta A(x, \xi) | \leq C_{\alpha, \beta, h} \langle \xi \rangle^{m-\alpha} \quad \forall \alpha, \beta \in \mathbb{N}, \ h \geq 1,$$

for some $C_{\alpha, \beta, h} > 0$.

The following theorem holds (cf. [KG]):

Theorem A.1 (Sharp-Gårding). Let $A(x, \xi) \in S^m$ and assume that $\text{Re} \, A(x, \xi) \geq 0$. Then there exist pseudo-differential operators $Q(x, D_x)$ and $R(x, D_x)$ with symbols, respectively, $Q(x, \xi) \in S^m$ and $R(x, \xi) \in S^{m-1}$, such that

$$A(x, D_x) = Q(x, D_x) + R(x, D_x)$$

$$\text{Re} \langle Q(x, D_x) u, u \rangle \geq 0 \quad \forall u \in H^m$$

$$R(x, \xi) \sim \psi_1(\xi) D_x A(x, \xi) + \sum_{\alpha + \beta \geq 2} \psi_{\alpha, \beta}(\xi) \partial_\xi^\alpha \partial_x^\beta A(x, \xi),$$

(A.1)

with $\psi_1, \psi_{\alpha, \beta}$ real valued functions, $\psi_1 \in S^{-1}$ and $\psi_{\alpha, \beta} \in S^{(\alpha-\beta)/2}$.

Remark A.2. Theorem A.1 implies the well-known sharp-Gårding inequality

$$\text{Re} \langle A(x, D_x) u, u \rangle \geq -c \| u \|_{S^{-1}}^2,$$

(A.2)

for some $c > 0$.

Moreover, the following theorem holds (cf. [FP]):

Theorem A.3 (Fefferman-Phong inequality). Let $A(x, \xi) \in S^m$ with $\text{Re} \, A(x, \xi) \geq 0$. Then

$$\text{Re} \langle A(x, D_x) u, u \rangle \geq -c \| u \|_{S^{-2}}^2$$

(A.3)

for some $c > 0$.

References

